Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 80(3): 576-590, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31719098

RESUMO

Inhibition of the androgen receptor (AR) is the main strategy to treat advanced prostate cancers. AR-independent treatment-resistant prostate cancer is a major unresolved clinical problem. Patients with prostate cancer with alterations in canonical WNT pathway genes, which lead to ß-catenin activation, are refractory to AR-targeted therapies. Here, using clinically relevant murine prostate cancer models, we investigated the significance of ß-catenin activation in prostate cancer progression and treatment resistance. ß-Catenin activation, independent of the cell of origin, cooperated with Pten loss to drive AR-independent castration-resistant prostate cancer. Prostate tumors with ß-catenin activation relied on the noncanonical WNT ligand WNT5a for sustained growth. WNT5a repressed AR expression and maintained the expression of c-Myc, an oncogenic effector of ß-catenin activation, by mediating nuclear localization of NFκBp65 and ß-catenin. Overall, WNT/ß-catenin and AR signaling are reciprocally inhibited. Therefore, inhibiting WNT/ß-catenin signaling by limiting WNT secretion in concert with AR inhibition may be useful for treating prostate cancers with alterations in WNT pathway genes. SIGNIFICANCE: Targeting of both AR and WNT/ß-catenin signaling may be required to treat prostate cancers that exhibit alterations of the WNT pathway.


Assuntos
Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , PTEN Fosfo-Hidrolase/deficiência , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Androgênicos/metabolismo , Proteína Wnt-5a/metabolismo , beta Catenina/metabolismo , Antagonistas de Receptores de Andrógenos/farmacologia , Animais , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Humanos , Masculino , Camundongos , Prognóstico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores Androgênicos/genética , Taxa de Sobrevida , Células Tumorais Cultivadas , Proteína Wnt-5a/genética , Ensaios Antitumorais Modelo de Xenoenxerto , beta Catenina/genética
3.
Oncogene ; 39(8): 1797-1806, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31740786

RESUMO

BRF1 is a rate-limiting factor for RNA Polymerase III-mediated transcription and is elevated in numerous cancers. Here, we report that elevated levels of BRF1 associate with poor prognosis in human prostate cancer. In vitro studies in human prostate cancer cell lines demonstrated that transient overexpression of BRF1 increased cell proliferation whereas the transient downregulation of BRF1 reduced proliferation and mediated cell cycle arrest. Consistent with our clinical observations, BRF1 overexpression in a Pten-deficient mouse (PtenΔ/Δ BRF1Tg) prostate cancer model accelerated prostate carcinogenesis and shortened survival. In PtenΔ/Δ BRF1Tg tumours, immune and inflammatory processes were altered, with reduced tumoral infiltration of neutrophils and CD4 positive T cells, which can be explained by decreased levels of complement factor D (CFD) and C7 components of the complement cascade, an innate immune pathway that influences the adaptive immune response. We tested if the secretome was involved in BRF1-driven tumorigenesis. Unbiased proteomic analysis on BRF1-overexpresing PC3 cells confirmed reduced levels of CFD in the secretome, implicating the complement system in prostate carcinogenesis. We further identify that expression of C7 significantly correlates with expression of CD4 and has the potential to alter clinical outcome in human prostate cancer, where low levels of C7 associate with poorer prognosis.


Assuntos
Carcinogênese , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Idoso , Linfócitos T CD4-Positivos/imunologia , Ciclo Celular , Proliferação de Células , Humanos , Masculino , Pessoa de Meia-Idade , PTEN Fosfo-Hidrolase/metabolismo , Prognóstico , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/metabolismo
4.
Sci Rep ; 7(1): 13241, 2017 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-29038439

RESUMO

Extracellular signal-regulated protein kinase 5 (ERK5) has been implicated during development and carcinogenesis. Nkx3.1-mediated Cre expression is a useful strategy to genetically manipulate the mouse prostate. While grossly normal at birth, we observed an unexpected phenotype of spinal protrusion in Nkx3.1:Cre;Erk5 fl/fl (Erk5 fl/fl) mice by ~6-8 weeks of age. X-ray, histological and micro CT (µCT) analyses showed that 100% of male and female Erk5 fl/fl mice had a severely deformed curved thoracic spine, with an associated loss of trabecular bone volume. Although sex-specific differences were observed, histomorphometry measurements revealed that both bone resorption and bone formation parameters were increased in male Erk5 fl/fl mice compared to wild type (WT) littermates. Osteopenia occurs where the rate of bone resorption exceeds that of bone formation, so we investigated the role of the osteoclast compartment. We found that treatment of RANKL-stimulated primary bone marrow-derived macrophage (BMDM) cultures with small molecule ERK5 pathway inhibitors increased osteoclast numbers. Furthermore, osteoclast numbers and expression of osteoclast marker genes were increased in parallel with reduced Erk5 expression in cultures generated from Erk5 fl/fl mice compared to WT mice. Collectively, these results reveal a novel role for Erk5 during bone maturation and homeostasis in vivo.


Assuntos
Proteína Quinase 7 Ativada por Mitógeno/fisiologia , Osteoclastos/metabolismo , Coluna Vertebral/anormalidades , Animais , Reabsorção Óssea/genética , Osso Esponjoso/anormalidades , Catepsina K/biossíntese , Contagem de Células , Feminino , Deleção de Genes , Proteínas de Homeodomínio/metabolismo , Integrases/genética , Ativação Linfocitária , Masculino , Camundongos , Camundongos Transgênicos , Proteína Quinase 7 Ativada por Mitógeno/genética , Fatores de Transcrição NFATC/biossíntese , Osteogênese/genética , Receptor Ativador de Fator Nuclear kappa-B/biossíntese , Fatores de Transcrição/metabolismo
5.
Cancer Res ; 77(12): 3158-3168, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28515147

RESUMO

Prostate cancer does not appear to respond to immune checkpoint therapies where T-cell infiltration may be a key limiting factor. Here, we report evidence that ablating the growth regulatory kinase Erk5 can increase T-cell infiltration in an established Pten-deficient mouse model of human prostate cancer. Mice that were doubly mutant in prostate tissue for Pten and Erk5 (prostate DKO) exhibited a markedly increased median survival with reduced tumor size and proliferation compared with control Pten-mutant mice, the latter of which exhibited increased Erk5 mRNA expression. A comparative transcriptomic analysis revealed upregulation in prostate DKO mice of the chemokines Ccl5 and Cxcl10, two potent chemoattractants for T lymphocytes. Consistent with this effect, we observed a relative increase in a predominantly CD4+ T-cell infiltrate in the prostate epithelial and stroma of tumors from DKO mice. Collectively, our results offer a preclinical proof of concept for ERK5 as a target to enhance T-cell infiltrates in prostate cancer, with possible implications for leveraging immune therapy in this disease. Cancer Res; 77(12); 3158-68. ©2017 AACR.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos do Interstício Tumoral/imunologia , Proteína Quinase 7 Ativada por Mitógeno/deficiência , Neoplasias da Próstata/imunologia , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Hibridização In Situ , Microdissecção e Captura a Laser , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Quinase 7 Ativada por Mitógeno/genética , Proteína Quinase 7 Ativada por Mitógeno/imunologia , PTEN Fosfo-Hidrolase/deficiência , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/imunologia , Neoplasias da Próstata/genética , Reação em Cadeia da Polimerase em Tempo Real
6.
J Cell Sci ; 127(Pt 17): 3659-65, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25074812

RESUMO

Nucleolar sequestration of the RelA subunit of nuclear factor (NF)-κB is an important mechanism for regulating NF-κB transcriptional activity. Ubiquitylation, facilitated by COMMD1 (also known as MURR1), acts as a crucial nucleolar-targeting signal for RelA, but how this ubiquitylation is regulated, and how it differs from cytokine-mediated ubiquitylation, which causes proteasomal degradation of RelA, is poorly understood. Here, we report a new role for p300 (also known as EP300) in controlling stimulus-specific ubiquitylation of RelA, through modulation of COMMD1. We show that p300 is required for stress-mediated ubiquitylation and nucleolar translocation of RelA, but that this effect is indirect. We also demonstrate that COMMD1 is acetylated by p300 and that acetylation protects COMMD1 from XIAP-mediated proteosomal degradation. Furthermore, we demonstrate that COMMD1 acetylation is enhanced by aspirin-mediated stress, and that this acetylation is absolutely required for the protein to bind RelA under these conditions. In contrast, tumour necrosis factor (TNF) has no effect on COMMD1 acetylation. Finally, we demonstrate these findings have relevance in a whole tissue setting. These data offer a new paradigm for the regulation of NF-κB transcriptional activity, and the multiple other pathways controlled by COMMD1.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína p300 Associada a E1A/metabolismo , Fator de Transcrição RelA/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Acetilação , Nucléolo Celular/metabolismo , Células Cultivadas , Humanos , Processamento de Proteína Pós-Traducional/fisiologia , Subunidades Proteicas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ubiquitinação/fisiologia
7.
Carcinogenesis ; 32(7): 1069-77, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21551129

RESUMO

Long-term aspirin or related non-steroidal anti-inflammatory drugs (NSAIDs) ingestion can protect against colorectal cancer (CRC). NSAIDs have a pro-apoptotic activity and we have shown that stimulation of the nuclear factor-kappaB (NF-κB) pathway is a key component of this pro-apoptotic effect. However, the upstream pathways have yet to be fully elucidated. Here, we demonstrate that aspirin activates the c-Src tyrosine kinase pathway in CRC cells. We show that c-Src activation occurs in a time- and dose-dependent manner, preceding aspirin-mediated degradation of IκBα, nuclear/nucleolar translocation of NF-κB/RelA and induction of apoptosis. Furthermore, inhibition of c-Src activity, by chemical inhibition or expression of a kinase dead form of the protein abrogates aspirin-mediated degradation of IκBα, nuclear translocation of RelA and apoptosis, suggesting a causal link. Expression of constitutively active c-Src mimics aspirin-induced stimulation of the NF-κB pathway. The NSAIDs sulindac, sulindac sulphone and indomethacin all similarly activate a c-Src-dependent NF-κB and apoptotic response. These data provide compelling evidence that c-Src is an upstream mediator of aspirin/NSAID effects on NF-κB signalling and apoptosis in CRC cells and have relevance to the development of future chemotherapeutic/chemopreventative agents.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Apoptose/efeitos dos fármacos , Aspirina/farmacologia , Neoplasias Colorretais/patologia , NF-kappa B/fisiologia , Quinases da Família src/fisiologia , Western Blotting , Linhagem Celular Tumoral , Humanos , Imuno-Histoquímica , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Quinases da Família src/metabolismo
8.
Cancer Res ; 70(1): 139-49, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20048074

RESUMO

Stimulation of the NF-kappaB pathway can have proapoptotic or antiapoptotic consequences, and one mechanism that determines the outcome is the nuclear distribution of RelA. Certain stress stimuli induce nucleolar accumulation of RelA thereby mediating apoptosis, whereas others induce nucleoplasmic accumulation and inhibition of apoptosis. Here we investigated the mechanisms that regulate the nuclear distribution of RelA, specifically, the role of the ubiquitin/proteasome system. We found that stress-induced nucleolar translocation of RelA is preceded by ubiquitination of the protein. We also found that chemical proteasome inhibitors induce the ubiquitination and nucleolar translocation of RelA and that this is required for the apoptotic response to these agents. We show that the RelA nucleolar localization signal (amino acids 27-30) is a critical domain for ubiquitination of the protein but that the lysine residue within this motif is not a direct target. We show that RelA binds COMMD1, the rate-limiting component of the RelA ubiquitin ligase complex, in response to stress. Furthermore, we show that overexpression of COMMD1 promotes stress-mediated nucleolar targeting of RelA, whereas knockdown of COMMD1 blocks this effect, causing RelA to remain in the nucleoplasm. These data identify a new role for COMMD1 in regulating the nuclear/nucleolar distribution of RelA and suggest that ubiquitination acts as a signal for transport of RelA to the nucleolus. These findings have relevance to the design of chemopreventative/anticancer agents that act by targeting RelA to the nucleolar compartment.


Assuntos
Proteínas de Transporte/metabolismo , Nucléolo Celular/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Transporte Proteico/fisiologia , Fator de Transcrição RelA/metabolismo , Ubiquitinação/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Apoptose/fisiologia , Western Blotting , Linhagem Celular , Humanos , Imuno-Histoquímica , Imunoprecipitação , NF-kappa B/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA