RESUMO
Single-molecule topological insulators are promising candidates as conducting wires over nanometre length scales. A key advantage is their ability to exhibit quasi-metallic transport, in contrast to conjugated molecular wires which typically exhibit a low conductance that decays as the wire length increases. Here, we study a family of oligophenylene-bridged bis(triarylamines) with tunable and stable mono- or di-radicaloid character. These wires can undergo one- and two-electron chemical oxidations to the corresponding mono-cation and di-cation, respectively. We show that the oxidized wires exhibit reversed conductance decay with increasing length, consistent with the expectation for Su-Schrieffer-Heeger-type one-dimensional topological insulators. The 2.6-nm-long di-cation reported here displays a conductance greater than 0.1G0, where G0 is the conductance quantum, a factor of 5,400 greater than the neutral form. The observed conductance-length relationship is similar between the mono-cation and di-cation series. Density functional theory calculations elucidate how the frontier orbitals and delocalization of radicals facilitate the observed non-classical quasi-metallic behaviour.
RESUMO
We report transport measurements on tunable single-molecule junctions of the organic perchlorotrityl radical molecule, contacted with gold electrodes at low temperature. The current-voltage characteristics of a subset of junctions shows zero-bias anomalies due to the Kondo effect and in addition elevated magnetoresistance (MR). Junctions without Kondo resonance reveal a much stronger MR. Furthermore, we show that the amplitude of the MR can be tuned by mechanically stretching the junction. On the basis of these findings, we attribute the high MR to an interference effect involving spin-dependent scattering at the metal-molecule interface and assign the Kondo effect to the unpaired spin located in the center of the molecule in asymmetric junctions.
RESUMO
The adsorption geometry and the electronic structure of a Blatter radical derivative on a gold surface were investigated by a combination of high-resolution noncontact atomic force microscopy and scanning tunneling microscopy. While the hybridization with the substrate hinders direct access to the molecular states, we show that the unpaired-electron orbital can be probed with Ångström resolution by mapping the spatial distribution of the Kondo resonance. The Blatter derivative features a peculiar delocalization of the unpaired-electron orbital over some but not all moieties of the molecule, such that the Kondo signature can be related to the spatial fingerprint of the orbital. We observe a direct correspondence between these two quantities, including a pronounced nodal plane structure. Finally, we demonstrate that the spatial signature of the Kondo resonance also persists upon noncovalent dimerization of molecules.
RESUMO
Stable organic radicals have potential applications for building organic spintronic devices. To fulfill this potential, the interface between organic radicals and metal electrodes must be well characterized. Here, through a combined effort that includes synthesis, scanning tunneling microscopy, X-ray spectroscopy, and single-molecule conductance measurements, we comprehensively probe the electronic interaction between gold metal electrodes and a benchtop stable radical-the Blatter radical. We find that despite its open-shell character and having a half-filled orbital close to the Fermi level, the radical is stable on a gold substrate under ultrahigh vacuum. We observe a Kondo resonance arising from the radical and spectroscopic signatures of its half-filled orbitals. By contrast, in solution-based single-molecule conductance measurements, the radical character is lost through oxidation with charge transfer occurring from the molecule to metal. Our experiments show that the stability of radical states can be very sensitive to the environment around the molecule.
RESUMO
Linear acenes are a well-studied class of polycyclic aromatic hydrocarbons and their established physical properties have led to their widespread application across the field of organic electronics. However, their quinoidal forms - dihydroacenes - are much less explored and exhibit vastly different photophysical and electronic properties due to their non-planar, cross-conjugated nature. In this work, we present a series of difluorenylidene dihydroacenes which exhibit a butterfly-like structure with a quinoidal skeleton, resulting in comparatively higher optical gaps and lower redox activities than those of their planar analogs. We found that these compounds exhibit aggregation induced emission (AIE), activated through restriction of the "flapping" vibrational mode of the molecules in the solid state. Furthermore, anthracene-containing dihydroacenes exhibit thermally activated ground-state spin switching as evidenced by planarization of the acene core and diradical activity recorded by EPR. These two characteristics in this relatively unexplored class of materials provide new insights for the design of multifunctional materials.
RESUMO
Single-molecule electronic devices provide researchers with an unprecedented ability to relate novel physical phenomena to molecular chemical structures. Typically, conjugated aromatic molecular backbones are relied upon to create electronic devices, where the aromaticity of the building blocks is used to enhance conductivity. We capitalize on the classical physical organic chemistry concept of Hückel antiaromaticity by demonstrating a single-molecule switch that exhibits low conductance in the neutral state and, upon electrochemical oxidation, reversibly switches to an antiaromatic high-conducting structure. We form single-molecule devices using the scanning tunneling microscope-based break-junction technique and observe an on/off ratio of ~70 for a thiophenylidene derivative that switches to an antiaromatic state with 6-4-6-π electrons. Through supporting nuclear magnetic resonance measurements, we show that the doubly oxidized core has antiaromatic character and we use density functional theory calculations to rationalize the origin of the high-conductance state for the oxidized single-molecule junction. Together, our work demonstrates how the concept of antiaromaticity can be exploited to create single-molecule devices that are highly conducting.
RESUMO
We have designed a series of pentacene dimers separated by homoconjugated or nonconjugated bridges that exhibit fast and efficient intramolecular singlet exciton fission (iSF). These materials are distinctive among reported iSF compounds because they exist in the unexplored regime of close spatial proximity but weak electronic coupling between the singlet exciton and triplet pair states. Using transient absorption spectroscopy to investigate photophysics in these molecules, we find that homoconjugated dimers display desirable excited-state dynamics, with significantly reduced recombination rates as compared to conjugated dimers with similar singlet fission rates. In addition, unlike conjugated dimers, the time constants for singlet fission are relatively insensitive to the interplanar angle between chromophores, since rotation about σ bonds negligibly affects the orbital overlap within the π-bonding network. In the nonconjugated dimer, where the iSF occurs with a time constant >10 ns, comparable to the fluorescence lifetime, we used electron spin resonance spectroscopy to unequivocally establish the formation of triplet-triplet multiexcitons and uncoupled triplet excitons through singlet fission. Together, these studies enable us to articulate the role of the conjugation motif in iSF.
RESUMO
Thiophene-1,1-dioxide (TDO) oligomers have fascinating electronic properties. We previously used thermopower measurements to show that a change in charge carrier from hole to electron occurs with increasing length of TDO oligomers when single-molecule junctions are formed between gold electrodes. In this article, we show for the first time that the dominant conducting orbitals for thiophene/TDO oligomers of fixed length can be tuned by altering the strength of the electron acceptors incorporated into the backbone. We use the scanning tunneling microscope break-junction (STM-BJ) technique and apply a recently developed method to determine the dominant transport channel in single-molecule junctions formed with these systems. Through these measurements, we find that increasing the electron affinity of thiophene derivatives, within a family of pentamers, changes the polarity of the charge carriers systematically from holes to electrons, with some systems even showing mid-gap transport characteristics.
RESUMO
The third generation of photovoltaic technology aims to reduce the fabrication cost and improve the power conversion efficiency (PCE) of solar cells. Singlet fission (SF), an efficient multiple exciton generation (MEG) process in organic semiconductors, is one promising way to surpass the Shockley-Queisser limit of conventional single-junction solar cells. Traditionally, this MEG process has been observed as an intermolecular process in organic materials. The implementation of intermolecular SF in photovoltaic devices has achieved an external quantum efficiency of over 100% and demonstrated significant promise for boosting the PCE of third generation solar cells. More recently, efficient intramolecular SF has been reported. Intramolecular SF materials are modular and have the potential to overcome certain design constraints that intermolecular SF materials possess, which may allow for more facile integration into devices.
RESUMO
Charge transport phenomena in single-molecule junctions are often dominated by tunneling, with a transmission function dictating the probability that electrons or holes tunnel through the junction. Here, we present a new and simple technique for measuring the transmission functions of molecular junctions in the coherent tunneling limit, over an energy range of 1.5 eV around the Fermi energy. We create molecular junctions in an ionic environment with electrodes having different exposed areas, which results in the formation of electric double layers of dissimilar density on the two electrodes. This allows us to electrostatically shift the molecular resonance relative to the junction Fermi levels in a manner that depends on the sign of the applied bias, enabling us to map out the junction's transmission function and determine the dominant orbital for charge transport in the molecular junction. We demonstrate this technique using two groups of molecules: one group having molecular resonance energies relatively far from EF and one group having molecular resonance energies within the accessible bias window. Our results compare well with previous electrochemical gating data and with transmission functions computed from first principles. Furthermore, with the second group of molecules, we are able to examine the behavior of a molecular junction as a resonance shifts into the bias window. This work provides a new, experimentally simple route for exploring the fundamentals of charge transport at the nanoscale.
RESUMO
Singlet fission (SF) has the potential to significantly enhance the photocurrent in single-junction solar cells and thus raise the power conversion efficiency from the Shockley-Queisser limit of 33% to 44%. Until now, quantitative SF yield at room temperature has been observed only in crystalline solids or aggregates of oligoacenes. Here, we employ transient absorption spectroscopy, ultrafast photoluminescence spectroscopy, and triplet photosensitization to demonstrate intramolecular singlet fission (iSF) with triplet yields approaching 200% per absorbed photon in a series of bipentacenes. Crucially, in dilute solution of these systems, SF does not depend on intermolecular interactions. Instead, SF is an intrinsic property of the molecules, with both the fission rate and resulting triplet lifetime determined by the degree of electronic coupling between covalently linked pentacene molecules. We found that the triplet pair lifetime can be as short as 0.5 ns but can be extended up to 270 ns.
RESUMO
A common synthetic strategy used to design low-bandgap organic semiconductors employs the use of "push-pull" building blocks, where electron -rich and electron-deficient monomers are alternated along the π-conjugated backbone of a molecule or polymer. Incorporating strong "pull" units with high electron affinity is a means to further decrease the optical gap for infrared optoelectronics or to develop n-type semiconducting materials. Here we show that the use of thiophene-1,1-dioxide as a strong acceptor in "push-pull" oligomers affects the electronic structure and carrier dynamics in unexpected ways. Critically, the overall excited-state lifetime is reduced by several orders of magnitude relative to unoxidized analogs due to the introduction of low-energy optically dark states and low-energy triplet states that allow for fast internal conversion and intramolecular singlet fission. We found that the electronic structure and excited-state lifetime are strongly dependent on the number of sequential thiophene-1,1-dioxide units. These results suggest that both the static and dynamical optical properties are highly tunable via small changes in chemical structure that have drastic effects on the optoelectronic properties, which can impact the types of applications that involve these materials.
RESUMO
The ability to advance our understanding of multiple exciton generation (MEG) in organic materials has been restricted by the limited number of materials capable of singlet fission. A particular challenge is the development of materials that undergo efficient intramolecular fission, such that local order and strong nearest-neighbour coupling is no longer a design constraint. Here we address these challenges by demonstrating that strong intrachain donor-acceptor interactions are a key design feature for organic materials capable of intramolecular singlet fission. By conjugating strong-acceptor and strong-donor building blocks, small molecules and polymers with charge-transfer states that mediate population transfer between singlet excitons and triplet excitons are synthesized. Using transient optical techniques, we show that triplet populations can be generated with yields up to 170%. These guidelines are widely applicable to similar families of polymers and small molecules, and can lead to the development of new fission-capable materials with tunable electronic structure, as well as a deeper fundamental understanding of MEG.