Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 917: 170363, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38308900

RESUMO

Living shorelines aim to enhance the resilience of coastlines to hazards while simultaneously delivering co-benefits such as carbon sequestration. Despite the potential ecological and socio-economic benefits of living shorelines over conventional engineered coastal protection structures, application is limited globally. Australia has a long and diverse coastline that provides prime opportunities for living shorelines using beaches and dunes, vegetation, and biogenic reefs, which may be either natural ('soft' approach) or with an engineered structural component ('hybrid' approach). Published scientific studies, however, have indicated limited use of living shorelines for coastal protection in Australia. In response, we combined a national survey and interviews of coastal practitioners and a grey and peer-reviewed literature search to (1) identify barriers to living shoreline implementation; and (2) create a database of living shoreline projects in Australia based on sources other than scientific literature. Projects included were those that had either a primary or secondary goal of protection of coastal assets from erosion and/or flooding. We identified 138 living shoreline projects in Australia through the means sampled starting in 1970; with the number of projects increasing through time particularly since 2000. Over half of the total projects (59 %) were considered to be successful according to their initial stated objective (i.e., reducing hazard risk) and 18 % of projects could not be assessed for their success based on the information available. Seventy percent of projects received formal or informal monitoring. Even in the absence of peer-reviewed support for living shoreline construction in Australia, we discovered local and regional increases in their use. This suggests that coastal practitioners are learning on-the-ground, however more generally it was stated that few examples of living shorelines are being made available, suggesting a barrier in information sharing among agencies at a broader scale. A database of living shoreline projects can increase knowledge among practitioners globally to develop best practice that informs technical guidelines for different approaches and helps focus attention on areas for further research.


Assuntos
Sequestro de Carbono , Inundações , Austrália
2.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-33972407

RESUMO

Ocean warming and acidification threaten the future growth of coral reefs. This is because the calcifying coral reef taxa that construct the calcium carbonate frameworks and cement the reef together are highly sensitive to ocean warming and acidification. However, the global-scale effects of ocean warming and acidification on rates of coral reef net carbonate production remain poorly constrained despite a wealth of studies assessing their effects on the calcification of individual organisms. Here, we present global estimates of projected future changes in coral reef net carbonate production under ocean warming and acidification. We apply a meta-analysis of responses of coral reef taxa calcification and bioerosion rates to predicted changes in coral cover driven by climate change to estimate the net carbonate production rates of 183 reefs worldwide by 2050 and 2100. We forecast mean global reef net carbonate production under representative concentration pathways (RCP) 2.6, 4.5, and 8.5 will decline by 76, 149, and 156%, respectively, by 2100. While 63% of reefs are projected to continue to accrete by 2100 under RCP2.6, 94% will be eroding by 2050 under RCP8.5, and no reefs will continue to accrete at rates matching projected sea level rise under RCP4.5 or 8.5 by 2100. Projected reduced coral cover due to bleaching events predominately drives these declines rather than the direct physiological impacts of ocean warming and acidification on calcification or bioerosion. Presently degraded reefs were also more sensitive in our analysis. These findings highlight the low likelihood that the world's coral reefs will maintain their functional roles without near-term stabilization of atmospheric CO2 emissions.


Assuntos
Antozoários/fisiologia , Carbonato de Cálcio/metabolismo , Mudança Climática , Recifes de Corais , Animais , Antozoários/química , Carbonato de Cálcio/química , Humanos , Concentração de Íons de Hidrogênio , Oceanos e Mares , Água do Mar/química
3.
J Environ Manage ; 268: 110666, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32510431

RESUMO

The worlds' coral reefs are declining due to the combined effects of natural disturbances and anthropogenic pressures including thermal coral bleaching associated with global climate change. Nearshore corals are receiving increased anthropogenic stress from coastal development and nutrient run-off. Considering forecast increases in global temperatures, greater understanding of drivers of recovery on nearshore coral reefs following widespread bleaching events is required to inform management of local stressors. The west Pilbara coral reefs, with cross-shelf turbidity gradients coupled with a large nearby dredging program and recent history of repeated coral bleaching due to heat stress, represent an opportune location to study recovery from multiple disturbances. Mean coral cover at west Pilbara reefs was monitored from 2009 to 2018 and declined from 45% in 2009 to 5% in 2014 following three heat waves. Recruitment and juvenile abundance of corals were monitored from 2014 to 2018 and were combined with biological and physical data to identify which variables enhanced or hindered early-stage coral recovery of all hard corals and separately for the acroporids, the genera principally responsible for recovery in the short-term (<7 years). From 2014 to 2018, coral cover increased from 5 to 10% but recovery varied widely among sites (0-13%). Hard coral cover typically recovered most at shallower sites that had higher abundance of herbivorous fish, less macroalgae, and lower turbidity. Similarly, acroporid corals recovered most at sites with lower turbidity and macroalgal cover. Juvenile acroporid densities were a good indicator of recovery at least two years after they were recorded. However, recruitment to settlement tiles was not a good predictor of total coral or acroporid recovery. This study shows that coral recovery can be slower in areas of high turbidity and the rate may be reduced by local pressures, such as dredging. Management should focus on improving or maintaining local water quality to increase the likelihood of coral recovery under climate stress. Further, in turbid environments, juvenile coral density predicts early coral recovery better than recruits on tiles and may be a more cost-effective technique for monitoring recovery potential.


Assuntos
Antozoários , Alga Marinha , Animais , Mudança Climática , Recifes de Corais , Peixes
4.
Sci Rep ; 9(1): 19693, 2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31873181

RESUMO

Seeds of Australian species of the seagrass genus Posidonia are covered by a membranous wing that we hypothesize plays a fundamental role in seed establishment in sandy, wave swept marine environments. Dimensions of the seed and membrane were quantified under electron microscopy and micro-CT scans, and used to model rotational, drag and lift forces. Seeds maintain contact with the seabed in the presence of strong turbulence: the larger the wing, the more stable the seed. Wing surface area increases from P. sinuosa < P. australis < P.coriacea correlating with their ability to establish in increasingly energetic environments. This unique seed trait in a marine angiosperm corresponds to adaptive pressures imposed on seagrass species along 7,500 km of Australia's coastline, from open, high energy coasts to calmer environments in bays and estuaries.


Assuntos
Alismatales/fisiologia , Sementes/fisiologia , Adaptação Fisiológica , Alismatales/anatomia & histologia , Organismos Aquáticos/fisiologia , Austrália , Baías , Simulação por Computador , Ecossistema , Estuários , Hidrodinâmica , Microscopia Eletrônica de Varredura , Modelos Biológicos , Sementes/anatomia & histologia , Microtomografia por Raio-X
5.
Mol Ecol ; 27(24): 5019-5034, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30427083

RESUMO

Movement is fundamental to the ecology and evolutionary dynamics within species. Understanding movement through seed dispersal in the marine environment can be difficult due to the high spatial and temporal variability of ocean currents. We employed a mutually enriching approach of population genetic assignment procedures and dispersal predictions from a hydrodynamic model to overcome this difficulty and quantify the movement of dispersing floating fruit of the temperate seagrass Posidonia australis Hook.f. across coastal waters in south-western Australia. Dispersing fruit cohorts were collected from the water surface over two consecutive years, and seeds were genotyped using microsatellite DNA markers. Likelihood-based genetic assignment tests were used to infer the meadow of origin for seed cohorts and individuals. A three-dimensional hydrodynamic model was coupled with a particle transport model to simulate the movement of fruit at the water surface. Floating fruit cohorts were mainly assigned genetically to the nearest meadow, but significant genetic differentiation between cohort and most likely meadow of origin suggested a mixed origin. This was confirmed by genetic assignment of individual seeds from the same cohort to multiple meadows. The hydrodynamic model predicted 60% of fruit dispersed within 20 km, but that fruit was physically capable of dispersing beyond the study region. Concordance between these two independent measures of dispersal provides insight into the role of physical transport for long distance dispersal of fruit and the consequences for spatial genetic structuring of seagrass meadows.


Assuntos
Alismatales/genética , Genética Populacional , Hidrodinâmica , Dispersão de Sementes , Austrália , Frutas , Genótipo , Funções Verossimilhança , Repetições de Microssatélites , Modelos Teóricos , Oceanos e Mares , Movimentos da Água
6.
Science ; 359(6371): 80-83, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29302011

RESUMO

Tropical reef systems are transitioning to a new era in which the interval between recurrent bouts of coral bleaching is too short for a full recovery of mature assemblages. We analyzed bleaching records at 100 globally distributed reef locations from 1980 to 2016. The median return time between pairs of severe bleaching events has diminished steadily since 1980 and is now only 6 years. As global warming has progressed, tropical sea surface temperatures are warmer now during current La Niña conditions than they were during El Niño events three decades ago. Consequently, as we transition to the Anthropocene, coral bleaching is occurring more frequently in all El Niño-Southern Oscillation phases, increasing the likelihood of annual bleaching in the coming decades.


Assuntos
Antozoários , Recifes de Corais , El Niño Oscilação Sul , Aquecimento Global , Animais , Água do Mar
7.
Nature ; 543(7645): 373-377, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28300113

RESUMO

During 2015-2016, record temperatures triggered a pan-tropical episode of coral bleaching, the third global-scale event since mass bleaching was first documented in the 1980s. Here we examine how and why the severity of recurrent major bleaching events has varied at multiple scales, using aerial and underwater surveys of Australian reefs combined with satellite-derived sea surface temperatures. The distinctive geographic footprints of recurrent bleaching on the Great Barrier Reef in 1998, 2002 and 2016 were determined by the spatial pattern of sea temperatures in each year. Water quality and fishing pressure had minimal effect on the unprecedented bleaching in 2016, suggesting that local protection of reefs affords little or no resistance to extreme heat. Similarly, past exposure to bleaching in 1998 and 2002 did not lessen the severity of bleaching in 2016. Consequently, immediate global action to curb future warming is essential to secure a future for coral reefs.


Assuntos
Antozoários/metabolismo , Recifes de Corais , Aquecimento Global/estatística & dados numéricos , Animais , Austrália , Clorofila/metabolismo , Clorofila A , Conservação dos Recursos Naturais/tendências , Aquecimento Global/prevenção & controle , Água do Mar/análise , Temperatura
8.
Biol Rev Camb Philos Soc ; 92(2): 921-938, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27010433

RESUMO

Accurate estimation of connectivity among populations is fundamental for determining the drivers of population resilience, genetic diversity, adaptation and speciation. However the separation and quantification of contemporary versus historical connectivity remains a major challenge. This review focuses on marine angiosperms, seagrasses, that are fundamental to the health and productivity of temperate and tropical coastal marine environments globally. Our objective is to understand better the role of sexual reproduction and recruitment in influencing demographic and genetic connectivity among seagrass populations through an integrated multidisciplinary assessment of our present ecological, genetic, and demographic understanding, with hydrodynamic modelling of transport. We investigate (i) the demographic consequences of sexual reproduction, dispersal and recruitment in seagrasses, (ii) contemporary transport of seagrass pollen, fruits and seed, and vegetative fragments with a focus on hydrodynamic and particle transport models, and (iii) contemporary genetic connectivity among seagrass meadows as inferred through the application of genetic markers. New approaches are reviewed, followed by a summary outlining future directions for research: integrating seascape genetic approaches; incorporating hydrodynamic modelling for dispersal of pollen, seeds and vegetative fragments; integrating studies across broader geographic ranges; and incorporating non-equilibrium modelling. These approaches will lead to a more integrated understanding of the role of contemporary dispersal and recruitment in the persistence and evolution of seagrasses.


Assuntos
Variação Genética , Magnoliopsida/fisiologia , Fluxo Gênico , Genética Populacional , Reprodução , Sementes
9.
Sci Rep ; 6: 32029, 2016 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-27556689

RESUMO

Creating large conservation zones in remote areas, with less intense stakeholder overlap and limited environmental information, requires periodic review to ensure zonation mitigates primary threats and fill gaps in representation, while achieving conservation targets. Follow-up reviews can utilise improved methods and data, potentially identifying new planning options yielding a desirable balance between stakeholder interests. This research explored a marine zoning system in north-west Australia-a biodiverse area with poorly documented biota. Although remote, it is economically significant (i.e. petroleum extraction and fishing). Stakeholder engagement was used to source the best available biodiversity and socio-economic data and advanced spatial analyses produced 765 high resolution data layers, including 674 species distributions representing 119 families. Gap analysis revealed the current proposed zoning system as inadequate, with 98.2% of species below the Convention on Biological Diversity 10% representation targets. A systematic conservation planning algorithm Maxan provided zoning options to meet representation targets while balancing this with industry interests. Resulting scenarios revealed that conservation targets could be met with minimal impacts on petroleum and fishing industries, with estimated losses of 4.9% and 7.2% respectively. The approach addressed important knowledge gaps and provided a powerful and transparent method to reconcile industry interests with marine conservation.


Assuntos
Algoritmos , Biodiversidade , Conservação dos Recursos Naturais , Pesqueiros , Animais , Austrália , Ecossistema , Meio Ambiente , Oceanos e Mares , Indústria de Petróleo e Gás/métodos
10.
PLoS One ; 11(1): e0145822, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26790154

RESUMO

A Lagrangian particle tracking model driven by a regional ocean circulation model was used to investigate the seasonally varying connectivity patterns within the shelf circulation surrounding the 300 km long Ningaloo Reef in Western Australia (WA) during 2009-2010. Forward-in-time simulations revealed that surface water was transported equatorward and offshore in summer due to the upwelling-favorable winds. In winter, however, water was transported polewards down the WA coast due to the seasonally strong Leeuwin Current. Using backward-in-time simulations, the subsurface transport pathways revealed two main source regions of shelf water reaching Ningaloo Reef: (1) a year-round source to the northeast in the upper 100 m of water column; and (2) during the summer, an additional source offshore and to the west of Ningaloo in depths between ~30 and ~150 m. Transient wind-driven coastal upwelling, onshore geostrophic transport and stirring by offshore eddies were identified as the important mechanisms influencing the source water origins. The identification of these highly time-dependent transport pathways and source water locations is an essential step towards quantifying how key material (e.g., nutrients, larvae, contaminants, etc.) is exchanged between Ningaloo Reef and the surrounding shelf ocean, and how this is mechanistically coupled to the complex ocean dynamics in this region.


Assuntos
Recifes de Corais , Movimentos da Água , Animais , Modelos Teóricos , Oceanos e Mares , Estações do Ano , Austrália Ocidental , Vento
11.
Mov Ecol ; 3(1): 9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25897403

RESUMO

BACKGROUND: Seagrasses are clonal marine plants that form important biotic habitats in many tropical and temperate coastal ecosystems. While there is a reasonable understanding of the dynamics of asexual (vegetative) growth in seagrasses, sexual reproduction and the dispersal pathways of the seeds remain poorly studied. Here we address the potential for a predominantly clonal seagrass, P. australis, to disperse over long distances by movement of floating fruit via wind and surface currents within the coastal waters of Perth, Western Australia. We first simulated the dominant atmospheric and ocean forcing conditions that are known to disperse these seagrass seeds using a three-dimensional numerical ocean circulation model. Field observations obtained at 8 sites across the study area were used to validate the model performance over ~2 months in summer when buoyant P. australis fruit are released into the water column. P. australis fruit dispersal trajectories were then quantified throughout the region by incorporating key physical properties of the fruit within the transport model. The time taken for the floating fruit to release their seed (dehiscence) was incorporated into the model based on laboratory measurements, and was used to predict the settlement probability distributions across the model domain. RESULTS: The results revealed that high rates of local and regional demographic connectivity among P. australis meadows are achieved via contemporary seed dispersal. Dispersal of seeds via floating fruit has the potential to regularly connect meadows at distances of 10s of kilometres (50% of seeds produced) and infrequently for meadows at distances 100 s km (3% of seeds produced). CONCLUSIONS: The spatial patterns of seed dispersal were heavily influenced by atmospheric and oceanographic conditions, which generally drove a northward pattern of connectivity on a regional scale, but with geographical barriers influencing finer-scale connectivity pathways at some locations. Such levels of seed dispersal infer greater levels of ecological and genetic connectivity and suggest that seagrasses are not just strongly clonal.

12.
Ann Rev Mar Sci ; 7: 43-66, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25251270

RESUMO

Although the oceans play a fundamental role in shaping the distribution and function of coral reefs worldwide, a modern understanding of the complex interactions between ocean and reef processes is still only emerging. These dynamics are especially challenging owing to both the broad range of spatial scales (less than a meter to hundreds of kilometers) and the complex physical and biological feedbacks involved. Here, we review recent advances in our understanding of these processes, ranging from the small-scale mechanics of flow around coral communities and their influence on nutrient exchange to larger, reef-scale patterns of wave- and tide-driven circulation and their effects on reef water quality and perceived rates of metabolism. We also examine regional-scale drivers of reefs such as coastal upwelling, internal waves, and extreme disturbances such as cyclones. Our goal is to show how a wide range of ocean-driven processes ultimately shape the growth and metabolism of coral reefs.


Assuntos
Recifes de Corais , Biologia Marinha/métodos , Oceanos e Mares , Água do Mar/química , Movimentos da Água
13.
PLoS One ; 8(1): e53303, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23326411

RESUMO

We present a three-dimensional hydrodynamic-biogeochemical model of a wave-driven coral-reef lagoon system using the circulation model ROMS (Regional Ocean Modeling System) coupled with the wave transformation model SWAN (Simulating WAves Nearshore). Simulations were used to explore the sensitivity of water column carbonate chemistry across the reef system to variations in benthic reef metabolism, wave forcing, sea level, and system geomorphology. Our results show that changes in reef-water carbonate chemistry depend primarily on the ratio of benthic metabolism to the square root of the onshore wave energy flux as well as on the length and depth of the reef flat; however, they are only weakly dependent on channel geometry and the total frictional resistance of the reef system. Diurnal variations in pCO(2), pH, and aragonite saturation state (Ω(ar)) are primarily dependent on changes in net production and are relatively insensitive to changes in net calcification; however, net changes in pCO(2), pH, and Ω(ar) are more strongly influenced by net calcification when averaged over 24 hours. We also demonstrate that a relatively simple one-dimensional analytical model can provide a good description of the functional dependence of reef-water carbonate chemistry on benthic metabolism, wave forcing, sea level, reef flat morphology, and total system frictional resistance. Importantly, our results indicate that any long-term (weeks to months) net offsets in reef-water pCO(2) relative to offshore values should be modest for reef systems with narrow and/or deep lagoons. Thus, the long-term evolution of water column pCO(2) in many reef environments remains intimately connected to the regional-scale oceanography of offshore waters and hence directly influenced by rapid anthropogenically driven increases in pCO(2).


Assuntos
Carbonatos/química , Recifes de Corais , Oceanos e Mares , Água do Mar/química , Movimentos da Água , Animais , Antozoários/metabolismo , Carbono/análise , Dióxido de Carbono/análise , Simulação por Computador , Fricção , Hidrodinâmica , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA