Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1966, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438345

RESUMO

The "dorsal pons", or "dorsal pontine tegmentum" (dPnTg), is part of the brainstem. It is a complex, densely packed region whose nuclei are involved in regulating many vital functions. Notable among them are the parabrachial nucleus, the Kölliker Fuse, the Barrington nucleus, the locus coeruleus, and the dorsal, laterodorsal, and ventral tegmental nuclei. In this study, we applied single-nucleus RNA-seq (snRNA-seq) to resolve neuronal subtypes based on their unique transcriptional profiles and then used multiplexed error robust fluorescence in situ hybridization (MERFISH) to map them spatially. We sampled ~1 million cells across the dPnTg and defined the spatial distribution of over 120 neuronal subtypes. Our analysis identified an unpredicted high transcriptional diversity in this region and pinpointed the unique marker genes of many neuronal subtypes. We also demonstrated that many neuronal subtypes are transcriptionally similar between humans and mice, enhancing this study's translational value. Finally, we developed a freely accessible, GPU and CPU-powered dashboard ( http://harvard.heavy.ai:6273/ ) that combines interactive visual analytics and hardware-accelerated SQL into a data science framework to allow the scientific community to query and gain insights into the data.


Assuntos
Ascomicetos , Núcleos Parabraquiais , Tegmento Pontino , Humanos , Animais , Camundongos , Hibridização in Situ Fluorescente , Tronco Encefálico , Locus Cerúleo
2.
bioRxiv ; 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38014113

RESUMO

The "dorsal pons", or "dorsal pontine tegmentum" (dPnTg), is part of the brainstem. It is a complex, densely packed region whose nuclei are involved in regulating many vital functions. Notable among them are the parabrachial nucleus, the Kölliker Fuse, the Barrington nucleus, the locus coeruleus, and the dorsal, laterodorsal, and ventral tegmental nuclei. In this study, we applied single-nucleus RNA-seq (snRNA-seq) to resolve neuronal subtypes based on their unique transcriptional profiles and then used multiplexed error robust fluorescence in situ hybridization (MERFISH) to map them spatially. We sampled ~1 million cells across the dPnTg and defined the spatial distribution of over 120 neuronal subtypes. Our analysis identified an unpredicted high transcriptional diversity in this region and pinpointed many neuronal subtypes' unique marker genes. We also demonstrated that many neuronal subtypes are transcriptionally similar between humans and mice, enhancing this study's translational value. Finally, we developed a freely accessible, GPU and CPU-powered dashboard (http://harvard.heavy.ai:6273/) that combines interactive visual analytics and hardware-accelerated SQL into a data science framework to allow the scientific community to query and gain insights into the data.

3.
Nat Neurosci ; 26(11): 1929-1941, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37919612

RESUMO

In addition to its motor functions, the cerebellum is involved in emotional regulation, anxiety and affect. We found that suppressing the firing of cerebellar Purkinje cells (PCs) rapidly excites forebrain areas that contribute to such functions (including the amygdala, basal forebrain and septum), but that the classic cerebellar outputs, the deep cerebellar nuclei, do not directly project there. We show that PCs directly inhibit parabrachial nuclei (PBN) neurons that project to numerous forebrain regions. Suppressing the PC-PBN pathway influences many regions in the forebrain and is aversive. Molecular profiling shows that PCs directly inhibit numerous types of PBN neurons that control diverse behaviors that are not involved in motor control. Therefore, the PC-PBN pathway allows the cerebellum to directly regulate activity in the forebrain, and may be an important substrate for cerebellar disorders arising from damage to the posterior vermis.


Assuntos
Núcleos Parabraquiais , Células de Purkinje , Células de Purkinje/fisiologia , Cerebelo , Prosencéfalo/fisiologia , Neurônios/metabolismo
4.
Res Sq ; 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37546985

RESUMO

We investigated how transmission of hunger- and satiety-promoting neuropeptides, NPY and αMSH, is integrated at the level of intracellular signaling to control feeding. Receptors for these peptides use the second messenger cAMP. How cAMP integrates opposing peptide signals to regulate energy balance, and the in vivo spatiotemporal dynamics of endogenous peptidergic signaling, remain largely unknown. We show that AgRP axon stimulation in the paraventricular hypothalamus evokes probabilistic NPY release that triggers stochastic cAMP decrements in downstream MC4R-expressing neurons (PVHMC4R). Meanwhile, POMC axon stimulation triggers stochastic, αMSH-dependent cAMP increments. Release of either peptide impacts a ~100 µm diameter region, and when these peptide signals overlap, they compete to control cAMP. The competition is reflected by hunger-state-dependent differences in the amplitude and persistence of cAMP transients: hunger peptides are more efficacious in the fasted state, satiety peptides in the fed state. Feeding resolves the competition by simultaneously elevating αMSH release and suppressing NPY release, thereby sustaining elevated cAMP in PVHMC4R neurons. In turn, cAMP potentiates feeding-related excitatory inputs and promotes satiation across minutes. Our findings highlight how biochemical integration of opposing, quantal peptide signals during energy intake orchestrates a gradual transition between stable states of hunger and satiety.

5.
Nature ; 620(7972): 154-162, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37495689

RESUMO

Fasting initiates a multitude of adaptations to allow survival. Activation of the hypothalamic-pituitary-adrenal (HPA) axis and subsequent release of glucocorticoid hormones is a key response that mobilizes fuel stores to meet energy demands1-5. Despite the importance of the HPA axis response, the neural mechanisms that drive its activation during energy deficit are unknown. Here, we show that fasting-activated hypothalamic agouti-related peptide (AgRP)-expressing neurons trigger and are essential for fasting-induced HPA axis activation. AgRP neurons do so through projections to the paraventricular hypothalamus (PVH), where, in a mechanism not previously described for AgRP neurons, they presynaptically inhibit the terminals of tonically active GABAergic afferents from the bed nucleus of the stria terminalis (BNST) that otherwise restrain activity of corticotrophin-releasing hormone (CRH)-expressing neurons. This disinhibition of PVHCrh neurons requires γ-aminobutyric acid (GABA)/GABA-B receptor signalling and potently activates the HPA axis. Notably, stimulation of the HPA axis by AgRP neurons is independent of their induction of hunger, showing that these canonical 'hunger neurons' drive many distinctly different adaptations to the fasted state. Together, our findings identify the neural basis for fasting-induced HPA axis activation and uncover a unique means by which AgRP neurons activate downstream neurons: through presynaptic inhibition of GABAergic afferents. Given the potency of this disinhibition of tonically active BNST afferents, other activators of the HPA axis, such as psychological stress, may also work by reducing BNST inhibitory tone onto PVHCrh neurons.


Assuntos
Jejum , Sistema Hipotálamo-Hipofisário , Neurônios , Sistema Hipófise-Suprarrenal , Proteína Relacionada com Agouti/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Jejum/fisiologia , Neurônios GABAérgicos/metabolismo , Ácido gama-Aminobutírico/metabolismo , Sistema Hipotálamo-Hipofisário/citologia , Sistema Hipotálamo-Hipofisário/metabolismo , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/citologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Sistema Hipófise-Suprarrenal/citologia , Sistema Hipófise-Suprarrenal/inervação , Sistema Hipófise-Suprarrenal/metabolismo , Terminações Pré-Sinápticas/metabolismo , Núcleos Septais/citologia , Núcleos Septais/metabolismo
6.
bioRxiv ; 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37503012

RESUMO

We investigated how transmission of hunger- and satiety-promoting neuropeptides, NPY and αMSH, is integrated at the level of intracellular signaling to control feeding. Receptors for these peptides use the second messenger cAMP, but the messenger's spatiotemporal dynamics and role in energy balance are controversial. We show that AgRP axon stimulation in the paraventricular hypothalamus evokes probabilistic and spatially restricted NPY release that triggers stochastic cAMP decrements in downstream MC4R-expressing neurons (PVH MC4R ). Meanwhile, POMC axon stimulation triggers stochastic, αMSH-dependent cAMP increments. NPY and αMSH competitively control cAMP, as reflected by hunger-state-dependent differences in the amplitude and persistence of cAMP transients evoked by each peptide. During feeding bouts, elevated αMSH release and suppressed NPY release cooperatively sustain elevated cAMP in PVH MC4R neurons, thereby potentiating feeding-related excitatory inputs and promoting satiation across minutes. Our findings highlight how state-dependent integration of opposing, quantal peptidergic events by a common biochemical target calibrates energy intake.

7.
Am J Clin Nutr ; 118(1): 314-328, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37149092

RESUMO

Obesity is increasing at an alarming rate. The effectiveness of currently available strategies for the treatment of obesity (including pharmacologic, surgical, and behavioral interventions) is limited. Understanding the neurobiology of appetite and the important drivers of energy intake (EI) can lead to the development of more effective strategies for the prevention and treatment of obesity. Appetite regulation is complex and is influenced by genetic, social, and environmental factors. It is intricately regulated by a complex interplay of endocrine, gastrointestinal, and neural systems. Hormonal and neural signals generated in response to the energy state of the organism and the quality of food eaten are communicated by paracrine, endocrine, and gastrointestinal signals to the nervous system. The central nervous system integrates homeostatic and hedonic signals to regulate appetite. Although there has been an enormous amount of research over many decades regarding the regulation of EI and body weight, research is only now yielding potentially effective treatment strategies for obesity. The purpose of this article is to summarize the key findings presented in June 2022 at the 23rd annual Harvard Nutrition Obesity Symposium entitled "The Neurobiology of Eating Behavior in Obesity: Mechanisms and Therapeutic Targets." Findings presented at the symposium, sponsored by NIH P30 Nutrition Obesity Research Center at Harvard, enhance our current understanding of appetite biology, including innovative techniques used to assess and systematically manipulate critical hedonic processes, which will shape future research and the development of therapeutics for obesity prevention and treatment.


Assuntos
Ingestão de Alimentos , Comportamento Alimentar , Humanos , Ingestão de Alimentos/fisiologia , Comportamento Alimentar/fisiologia , Obesidade/terapia , Apetite/fisiologia , Peso Corporal
8.
bioRxiv ; 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37205515

RESUMO

Combining the use of ex vivo and in vivo optogenetics, viral tracing, electrophysiology and behavioral testing, we show that the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) gates anxiety-controlling circuits by differentially affecting synaptic efficacy at projections from the basolateral amygdala (BLA) to two different subdivisions of the dorsal subdivision of the bed nucleus of the stria terminalis (BNST), modifying the signal flow in BLA-ovBNST-adBNST circuits in such a way that adBNST is inhibited. Inhibition of adBNST is translated into the reduced firing probability of adBNST neurons during afferent activation, explaining the anxiety-triggering actions of PACAP in BNST, as inhibition of adBNST is anxiogenic. Our results reveal how innate, fear-related behavioral mechanisms may be controlled by neuropeptides, PACAP specifically, at the level of underlying neural circuits by inducing long-lasting plastic changes in functional interactions between their different structural components.

9.
Cell Metab ; 35(5): 770-785.e5, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36965483

RESUMO

Restricting caloric intake effectively reduces body weight, but most dieters fail long-term adherence to caloric deficit and eventually regain lost weight. Hypothalamic circuits that control hunger drive critically determine body weight; yet, how weight loss sculpts these circuits to motivate food consumption until lost weight is regained remains unclear. Here, we probe the contribution of synaptic plasticity in discrete excitatory afferents on hunger-promoting AgRP neurons. We reveal a crucial role for activity-dependent, remarkably long-lasting amplification of synaptic activity originating from paraventricular hypothalamus thyrotropin-releasing (PVHTRH) neurons in long-term body weight control. Silencing PVHTRH neurons inhibits the potentiation of excitatory input to AgRP neurons and diminishes concomitant regain of lost weight. Brief stimulation of the pathway is sufficient to enduringly potentiate this glutamatergic hunger synapse and triggers an NMDAR-dependent gaining of body weight that enduringly persists. Identification of this activity-dependent synaptic amplifier provides a previously unrecognized target to combat regain of lost weight.


Assuntos
Fome , Hipotálamo , Humanos , Fome/fisiologia , Proteína Relacionada com Agouti/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo , Peso Corporal
10.
J Biol Chem ; 298(9): 102347, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35963433

RESUMO

Cell death-inducing DNA fragmentation factor-like effector C (CIDEC) expression in adipose tissue positively correlates with insulin sensitivity in obese humans. Further, E186X, a single-nucleotide CIDEC variant is associated with lipodystrophy, hypertriglyceridemia, and insulin resistance. To establish the unknown mechanistic link between CIDEC and maintenance of systemic glucose homeostasis, we generated transgenic mouse models expressing CIDEC (Ad-CIDECtg) and CIDEC E186X variant (Ad-CIDECmut) transgene specifically in the adipose tissue. We found that Ad-CIDECtg but not Ad-CIDECmut mice were protected against high-fat diet-induced glucose intolerance. Furthermore, we revealed the role of CIDEC in lipid metabolism using transcriptomics and lipidomics. Serum triglycerides, cholesterol, and low-density lipoproteins were lower in high-fat diet-fed Ad-CIDECtg mice compared to their littermate controls. Mechanistically, we demonstrated that CIDEC regulates the enzymatic activity of adipose triglyceride lipase via interacting with its activator, CGI-58, to reduce free fatty acid release and lipotoxicity. In addition, we confirmed that CIDEC is indeed a vital regulator of lipolysis in adipose tissue of obese humans, and treatment with recombinant CIDEC decreased triglyceride breakdown in visceral human adipose tissue. Our study unravels a central pathway whereby adipocyte-specific CIDEC plays a pivotal role in regulating adipose lipid metabolism and whole-body glucose homeostasis. In summary, our findings identify human CIDEC as a potential 'drug' or a 'druggable' target to reverse obesity-induced lipotoxicity and glucose intolerance.


Assuntos
Intolerância à Glucose , Resistência à Insulina , Animais , Colesterol , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos não Esterificados , Glucose , Intolerância à Glucose/genética , Intolerância à Glucose/prevenção & controle , Humanos , Resistência à Insulina/genética , Lipase/genética , Metabolismo dos Lipídeos , Lipoproteínas LDL/metabolismo , Camundongos , Nucleotídeos/metabolismo , Obesidade/genética , Proteínas/metabolismo , Transgenes , Triglicerídeos
11.
Nat Commun ; 13(1): 4163, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35851580

RESUMO

Humans and animals lacking orexin neurons exhibit daytime sleepiness, sleep attacks, and state instability. While the circuit basis by which orexin neurons contribute to consolidated wakefulness remains unclear, existing models posit that orexin neurons provide their wake-stabilizing influence by exerting excitatory tone on other brain arousal nodes. Here we show using in vivo optogenetics, in vitro optogenetic-based circuit mapping, and single-cell transcriptomics that orexin neurons also contribute to arousal maintenance through indirect inhibition of sleep-promoting neurons of the ventrolateral preoptic nucleus. Activation of this subcortical circuit rapidly drives wakefulness from sleep by differentially modulating the activity of ventrolateral preoptic neurons. We further identify and characterize a feedforward circuit through which orexin (and co-released glutamate) acts to indirectly target and inhibit sleep-promoting ventrolateral preoptic neurons to produce arousal. This revealed circuitry provides an alternate framework for understanding how orexin neurons contribute to the maintenance of consolidated wakefulness and stabilize behavioral state.


Assuntos
Nível de Alerta , Sono , Animais , Nível de Alerta/fisiologia , Humanos , Neurônios/fisiologia , Orexinas , Sono/fisiologia , Vigília/fisiologia
12.
Nat Metab ; 3(12): 1662-1679, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34931084

RESUMO

Insulin acts on neurons and glial cells to regulate systemic glucose metabolism and feeding. However, the mechanisms of insulin access in discrete brain regions are incompletely defined. Here we show that insulin receptors in tanycytes, but not in brain endothelial cells, are required to regulate insulin access to the hypothalamic arcuate nucleus. Mice lacking insulin receptors in tanycytes (IR∆Tan mice) exhibit systemic insulin resistance, while displaying normal food intake and energy expenditure. Tanycytic insulin receptors are also necessary for the orexigenic effects of ghrelin, but not for the anorexic effects of leptin. IR∆Tan mice exhibit increased agouti-related peptide (AgRP) neuronal activity, while displaying blunted AgRP neuronal adaptations to feeding-related stimuli. Lastly, a highly palatable food decreases tanycytic and arcuate nucleus insulin signalling to levels comparable to those seen in IR∆Tan mice. These changes are rooted in modifications of cellular stress responses and of mitochondrial protein quality control in tanycytes. Conclusively, we reveal a critical role of tanycyte insulin receptors in gating feeding-state-dependent regulation of AgRP neurons and systemic insulin sensitivity, and show that insulin resistance in tanycytes contributes to the pleiotropic manifestations of obesity-associated insulin resistance.


Assuntos
Proteína Relacionada com Agouti/metabolismo , Células Ependimogliais/metabolismo , Hipotálamo/metabolismo , Insulina/metabolismo , Neurônios/metabolismo , Transdução de Sinais , Proteína Relacionada com Agouti/química , Animais , Biomarcadores , Barreira Hematoencefálica/metabolismo , Cálcio , Metabolismo Energético , Imunofluorescência , Grelina/metabolismo , Glucose/metabolismo , Resistência à Insulina , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Modelos Biológicos , Fragmentos de Peptídeos/metabolismo , Receptor de Insulina/metabolismo
13.
Elife ; 102021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34787082

RESUMO

Insulin-induced hypoglycemia is a major treatment barrier in type-1 diabetes (T1D). Accordingly, it is important that we understand the mechanisms regulating the circulating levels of glucagon. Varying glucose over the range of concentrations that occur physiologically between the fed and fuel-deprived states (8 to 4 mM) has no significant effect on glucagon secretion in the perfused mouse pancreas or in isolated mouse islets (in vitro), and yet associates with dramatic increases in plasma glucagon. The identity of the systemic factor(s) that elevates circulating glucagon remains unknown. Here, we show that arginine-vasopressin (AVP), secreted from the posterior pituitary, stimulates glucagon secretion. Alpha-cells express high levels of the vasopressin 1b receptor (V1bR) gene (Avpr1b). Activation of AVP neurons in vivo increased circulating copeptin (the C-terminal segment of the AVP precursor peptide) and increased blood glucose; effects blocked by pharmacological antagonism of either the glucagon receptor or V1bR. AVP also mediates the stimulatory effects of hypoglycemia produced by exogenous insulin and 2-deoxy-D-glucose on glucagon secretion. We show that the A1/C1 neurons of the medulla oblongata drive AVP neuron activation in response to insulin-induced hypoglycemia. AVP injection increased cytoplasmic Ca2+ in alpha-cells (implanted into the anterior chamber of the eye) and glucagon release. Hypoglycemia also increases circulating levels of AVP/copeptin in humans and this hormone stimulates glucagon secretion from human islets. In patients with T1D, hypoglycemia failed to increase both copeptin and glucagon. These findings suggest that AVP is a physiological systemic regulator of glucagon secretion and that this mechanism becomes impaired in T1D.


Assuntos
Arginina Vasopressina/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Glucagon/metabolismo , Adulto , Animais , Arginina Vasopressina/administração & dosagem , Diabetes Mellitus Tipo 1/fisiopatologia , Feminino , Humanos , Masculino , Camundongos , Adulto Jovem
14.
Elife ; 102021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34585668

RESUMO

Water balance, tracked by extracellular osmolality, is regulated by feedback and feedforward mechanisms. Feedback regulation is reactive, occurring as deviations in osmolality are detected. Feedforward or presystemic regulation is proactive, occurring when disturbances in osmolality are anticipated. Vasopressin (AVP) is a key hormone regulating water balance and is released during hyperosmolality to limit renal water excretion. AVP neurons are under feedback and feedforward regulation. Not only do they respond to disturbances in blood osmolality, but they are also rapidly suppressed and stimulated, respectively, by drinking and eating, which will ultimately decrease and increase osmolality. Here, we demonstrate that AVP neuron activity is regulated by multiple anatomically and functionally distinct neural circuits. Notably, presystemic regulation during drinking and eating are mediated by non-overlapping circuits that involve the lamina terminalis and hypothalamic arcuate nucleus, respectively. These findings reveal neural mechanisms that support differential regulation of AVP release by diverse behavioral and physiological stimuli.


Fine-tuning the amount of water present in the body at any given time is a tight balancing act. The hormone vasopressin helps to ensure that organisms do not get too dehydrated by allowing water in the urine to be reabsorbed into the bloodstream. A group of vasopressin neurons in the brain trigger the release of the hormone if water levels get too low (as reflected by an increase in osmolality, the level of substances dissolved in a unit of blood). However, these cells also receive additional information that allows them to predict and respond to upcoming changes in water levels. For example, drinking water while dehydrated 'switches off' the neurons, even before osmolality is restored in the blood to normal levels. Eating, on the other hand, rapidly activates vasopressin neurons before the food is digested and blood osmolality increases as a result. How vasopressin neurons receive this 'anticipatory' information remains unclear. Kim et al. explored this question in mice by inhibiting different sets of brain cells one by one, and then examining whether the neurons could still exhibit anticipatory responses. This revealed a remarkable division of labor in the neural circuits that regulate vasopressin neurons: two completely different sets of neurons from distinct areas of the brain are dedicated to relaying anticipatory information about either water or food intake. These findings help to understand how healthy levels of water can be maintained in the body. Overall, they give a glimpse into the neural mechanisms that underlie anticipatory forms of regulation, which can also take place when hunger or thirst neurons 'foresee' that food or water will be consumed.


Assuntos
Arginina Vasopressina/metabolismo , Neurônios/fisiologia , Pressão Osmótica , Equilíbrio Hidroeletrolítico/fisiologia , Animais , Feminino , Hipotálamo/fisiologia , Masculino , Camundongos , Neurônios/metabolismo , Concentração Osmolar , Vasopressinas/metabolismo
15.
Nat Commun ; 12(1): 5249, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34475397

RESUMO

The wake-active orexin system plays a central role in the dynamic regulation of glucose homeostasis. Here we show orexin receptor type 1 and 2 are predominantly expressed in dorsal raphe nucleus-dorsal and -ventral, respectively. Serotonergic neurons in ventral median raphe nucleus and raphe pallidus selectively express orexin receptor type 1. Inactivation of orexin receptor type 1 in serotonin transporter-expressing cells of mice reduced insulin sensitivity in diet-induced obesity, mainly by decreasing glucose utilization in brown adipose tissue and skeletal muscle. Selective inactivation of orexin receptor type 2 improved glucose tolerance and insulin sensitivity in obese mice, mainly through a decrease in hepatic gluconeogenesis. Optogenetic activation of orexin neurons in lateral hypothalamus or orexinergic fibers innervating raphe pallidus impaired or improved glucose tolerance, respectively. Collectively, the present study assigns orexin signaling in serotonergic neurons critical, yet differential orexin receptor type 1- and 2-dependent functions in the regulation of systemic glucose homeostasis.


Assuntos
Glucose/metabolismo , Obesidade/metabolismo , Receptores de Orexina/metabolismo , Neurônios Serotoninérgicos/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Homeostase , Região Hipotalâmica Lateral/citologia , Região Hipotalâmica Lateral/metabolismo , Resistência à Insulina , Fígado/metabolismo , Camundongos , Fibras Nervosas/metabolismo , Obesidade/etiologia , Receptores de Orexina/genética , Orexinas/metabolismo , Núcleos da Rafe/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Transdução de Sinais
16.
Nature ; 595(7869): 695-700, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34262177

RESUMO

Agouti-related peptide (AGRP)-expressing neurons are activated by fasting-this causes hunger1-4, an aversive state that motivates the seeking and consumption of food5,6. Eating returns AGRP neuron activity towards baseline on three distinct timescales: rapidly and transiently following sensory detection of food cues6-8, slowly and longer-lasting in response to nutrients in the gut9,10, and even more slowly and permanently with restoration of energy balance9,11. The rapid regulation by food cues is of particular interest as its neurobiological basis and purpose are unknown. Given that AGRP neuron activity is aversive6, the sensory cue-linked reductions in activity could function to guide behaviour. To evaluate this, we first identified the circuit mediating sensory cue inhibition and then selectively perturbed it to determine function. Here, we show that a lateral hypothalamic glutamatergic â†’ dorsomedial hypothalamic GABAergic (γ-aminobutyric acid-producing)12 → AGRP neuron circuit mediates this regulation. Interference with this circuit impairs food cue inhibition of AGRP neurons and, notably, greatly impairs learning of a sensory cue-initiated food-acquisition task. This is specific for food, as learning of an identical water-acquisition task is unaffected. We propose that decreases in aversive AGRP neuron activity6 mediated by this food-specific circuit increases the incentive salience13 of food cues, and thus facilitates the learning of food-acquisition tasks.


Assuntos
Proteína Relacionada com Agouti/metabolismo , Sinais (Psicologia) , Alimentos , Fome/fisiologia , Vias Neurais , Neurônios/fisiologia , Animais , Região Hipotalâmica Lateral/fisiologia , Aprendizagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Optogenética
17.
Neuron ; 109(13): 2106-2115.e4, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34077742

RESUMO

The vagus nerve innervates many organs, and most, if not all, of its motor fibers are cholinergic. However, no one knows its organizing principles-whether or not there are dedicated neurons with restricted targets that act as "labeled lines" to perform certain functions, including two opposing ones (gastric contraction versus relaxation). By performing unbiased transcriptional profiling of DMV cholinergic neurons, we discovered seven molecularly distinct subtypes of motor neurons. Then, by using subtype-specific Cre driver mice, we show that two of these subtypes exclusively innervate the glandular domain of the stomach where, remarkably, they contact different enteric neurons releasing functionally opposing neurotransmitters (acetylcholine versus nitric oxide). Thus, the vagus motor nerve communicates via genetically defined labeled lines to control functionally unique enteric neurons within discrete subregions of the gastrointestinal tract. This discovery reveals that the parasympathetic nervous system utilizes a striking division of labor to control autonomic function.


Assuntos
Encéfalo/metabolismo , Neurônios Colinérgicos/metabolismo , Sistema Nervoso Entérico/metabolismo , Mucosa Gástrica/metabolismo , Neurônios Motores/metabolismo , Estômago/inervação , Nervo Vago/metabolismo , Animais , Perfilação da Expressão Gênica , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vias Neurais/metabolismo
19.
Endocrinology ; 162(4)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33460433

RESUMO

Body energy homeostasis results from balancing energy intake and energy expenditure. Central nervous system administration of pituitary adenylate cyclase activating polypeptide (PACAP) dramatically alters metabolic function, but the physiologic mechanism of this neuropeptide remains poorly defined. PACAP is expressed in the mediobasal hypothalamus (MBH), a brain area essential for energy balance. Ventromedial hypothalamic nucleus (VMN) neurons contain, by far, the largest and most dense population of PACAP in the medial hypothalamus. This region is involved in coordinating the sympathetic nervous system in response to metabolic cues in order to re-establish energy homeostasis. Additionally, the metabolic cue of leptin signaling in the VMN regulates PACAP expression. We hypothesized that PACAP may play a role in the various effector systems of energy homeostasis, and tested its role by using VMN-directed, but MBH encompassing, adeno-associated virus (AAVCre) injections to ablate Adcyap1 (gene coding for PACAP) in mice (Adcyap1MBHKO mice). Adcyap1MBHKO mice rapidly gained body weight and adiposity, becoming hyperinsulinemic and hyperglycemic. Adcyap1MBHKO mice exhibited decreased oxygen consumption (VO2), without changes in activity. These effects appear to be due at least in part to brown adipose tissue (BAT) dysfunction, and we show that PACAP-expressing cells in the MBH can stimulate BAT thermogenesis. While we observed disruption of glucose clearance during hyperinsulinemic/euglycemic clamp studies in obese Adcyap1MBHKO mice, these parameters were normal prior to the onset of obesity. Thus, MBH PACAP plays important roles in the regulation of metabolic rate and energy balance through multiple effector systems on multiple time scales, which highlight the diverse set of functions for PACAP in overall energy homeostasis.


Assuntos
Hipotálamo/metabolismo , Obesidade/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Tecido Adiposo Marrom , Animais , Peso Corporal , Metabolismo Energético , Feminino , Humanos , Leptina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Obesidade/genética , Obesidade/fisiopatologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Sistema Nervoso Simpático/metabolismo , Termogênese , Núcleo Hipotalâmico Ventromedial/metabolismo
20.
Nature ; 589(7842): 426-430, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33268898

RESUMO

Among numerous challenges encountered at the beginning of extrauterine life, the most celebrated is the first breath that initiates a life-sustaining motor activity1. The neural systems that regulate breathing are fragile early in development, and it is not clear how they adjust to support breathing at birth. Here we identify a neuropeptide system that becomes activated immediately after birth and supports breathing. Mice that lack PACAP selectively in neurons of the retrotrapezoid nucleus (RTN) displayed increased apnoeas and blunted CO2-stimulated breathing; re-expression of PACAP in RTN neurons corrected these breathing deficits. Deletion of the PACAP receptor PAC1 from the pre-Bötzinger complex-an RTN target region responsible for generating the respiratory rhythm-phenocopied the breathing deficits observed after RTN deletion of PACAP, and suppressed PACAP-evoked respiratory stimulation in the pre-Bötzinger complex. Notably, a postnatal burst of PACAP expression occurred in RTN neurons precisely at the time of birth, coinciding with exposure to the external environment. Neonatal mice with deletion of PACAP in RTN neurons displayed increased apnoeas that were further exacerbated by changes in ambient temperature. Our findings demonstrate that well-timed PACAP expression by RTN neurons provides an important supplementary respiratory drive immediately after birth and reveal key molecular components of a peptidergic neural circuit that supports breathing at a particularly vulnerable period in life.


Assuntos
Tronco Encefálico/fisiologia , Parto/fisiologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Respiração , Animais , Apneia/metabolismo , Tronco Encefálico/citologia , Dióxido de Carbono/metabolismo , Feminino , Masculino , Camundongos , Neurônios/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/deficiência , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/deficiência , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA