Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
2.
J Immunol ; 212(11): 1639-1646, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38629913

RESUMO

Recently, we reported that preexposure of B cells to IL-4 induced an alternate, signalosome-independent BCR signaling pathway leading to protein kinase C (PKC)δ phosphorylation (pTyr311), which occurs in the membrane compartment. This is considered to represent a form of receptor crosstalk and signal integration. Unlike the classical BCR signaling pathway, Lyn kinase is indispensable for BCR-induced downstream events in the alternate pathway. Our previous report that alternate BCR signaling leading to ERK phosphorylation is triggered by LPS and PAM3CSK4 (much like IL-4) raises the possibility that other signaling outcomes such as PKCδ phosphorylation might be similarly affected. To explore the range of mediators capable of producing an alternate pathway for BCR signaling, we examined PKCδ translocation and phosphorylation in LPS- and PAM3CSK4-treated B cells stimulated by anti-Ig. We found that LPS and PAM3CSK4 alter the signaling pathway used by the BCR to produce PKCδ phosphorylation. As with IL-4, elements of the signalosome are not needed for PKCδ phosphorylation when BCR triggering occurs after LPS and PAM3CSK4. However, with LPS and PAM3CSK4, anti-Ig-induced phosphorylation of PKCδ takes place in the cytosol, in contrast to the IL-4-induced alternate pathway, wherein PKCδ phosphorylation occurs in the membrane. Furthermore, the BCR signaling pathway induced by LPS and PAM3CSK4 differs from that induced by IL-4 by not requiring Lyn. Thus, an alternate, signalosome-independent BCR signaling pathway for PKCδ phosphorylation is induced by TLR agonists but differs in important ways from the alternate pathway induced by IL-4.


Assuntos
Interleucina-4 , Lipopeptídeos , Lipopolissacarídeos , Proteína Quinase C-delta , Receptores de Antígenos de Linfócitos B , Transdução de Sinais , Quinases da Família src , Proteína Quinase C-delta/metabolismo , Fosforilação , Animais , Camundongos , Lipopolissacarídeos/farmacologia , Interleucina-4/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Lipopeptídeos/farmacologia , Quinases da Família src/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Receptores Toll-Like/metabolismo , Camundongos Endogâmicos C57BL
3.
Clin Chem Lab Med ; 62(5): 999-1010, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38037809

RESUMO

OBJECTIVES: Sepsis is a life-threatening condition implicating an inadequate activation of the immune system. Platelets act as modulators and contributors to immune processes. Indeed, altered platelet turnover, thrombotic events, and changes in thrombopoietin levels in systemic inflammation have been reported, but thrombopoietin-levels in sepsis and septic-shock have not yet been systematically evaluated. We therefore performed a meta-analysis of thrombopoietin (TPO)-levels in patients with sepsis. METHODS: Two independent reviewers screened records and full-text articles for inclusion. Scientific databases were searched for studies examining thrombopoietin levels in adult sepsis and septic-shock patients until August 1st 2022. RESULTS: Of 95 items screened, six studies met the inclusion criteria, including 598 subjects. Both sepsis and severe sepsis were associated with increased levels of thrombopoietin (sepsis vs. control: standardized mean difference 3.06, 95 % CI 1.35-4.77; Z=3.50, p=0.0005) (sepsis vs. severe sepsis: standardized mean difference -1.67, 95 % CI -2.46 to -0.88; Z=4.14, p<0.0001). TPO-levels did not show significant differences between severe sepsis and septic shock patients but differed between sepsis and inflammation-associated non-septic controls. Overall, high heterogeneity and low sample size could be noted. CONCLUSIONS: Concluding, increased levels of thrombopoietin appear to be present both in sepsis and severe sepsis with high heterogeneity but thrombopoietin does not allow to differentiate between severe sepsis and septic-shock. TPO may potentially serve to differentiate sepsis from non-septic trauma and/or tissue damage related (systemic) inflammation. Usage of different assays and high heterogeneity demand standardization of methods and further large multicenter trials.


Assuntos
Sepse , Choque Séptico , Adulto , Humanos , Trombopoetina
4.
JCI Insight ; 8(23)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-37934865

RESUMO

Autoimmunity is characterized by loss of tolerance to tissue-specific as well as systemic antigens, resulting in complex autoantibody landscapes. Here, we introduce and extensively validate the performance characteristics of a murine proteome-wide library for phage display immunoprecipitation and sequencing (PhIP-seq) in profiling mouse autoantibodies. This library was validated using 7 genetically distinct mouse lines across a spectrum of autoreactivity. Mice deficient in antibody production (Rag2-/- and µMT) were used to model nonspecific peptide enrichments, while cross-reactivity was evaluated using anti-ovalbumin B cell receptor-restricted OB1 mice as a proof of principle. The PhIP-seq approach was then utilized to interrogate 3 distinct autoimmune disease models. First, serum from Lyn-/- IgD+/- mice with lupus-like disease was used to identify nuclear and apoptotic bleb reactivities. Second, serum from nonobese diabetic (NOD) mice, a polygenic model of pancreas-specific autoimmunity, was enriched in peptides derived from both insulin and predicted pancreatic proteins. Lastly, Aire-/- mouse sera were used to identify numerous autoantigens, many of which were also observed in previous studies of humans with autoimmune polyendocrinopathy syndrome type 1 carrying recessive mutations in AIRE. These experiments support the use of murine proteome-wide PhIP-seq for antigenic profiling and autoantibody discovery, which may be employed to study a range of immune perturbations in mouse models of autoimmunity profiling.


Assuntos
Autoanticorpos , Bacteriófagos , Humanos , Animais , Camundongos , Proteoma , Autoimunidade , Peptídeos , Camundongos Endogâmicos NOD
5.
bioRxiv ; 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37066405

RESUMO

Autoimmunity is characterized by loss of tolerance to tissue-specific as well as systemic antigens, resulting in complex autoantibody landscapes. Here, we introduce and extensively validate the performance characteristics of a murine proteome-wide library for phage display immunoprecipitation and sequencing (PhIP-seq), to profile mouse autoantibodies. This system and library were validated using seven genetic mouse models across a spectrum of autoreactivity. Mice deficient in antibody production (Rag2-/- and µMT) were used to model non-specific peptide enrichments, while cross-reactivity was evaluated using anti-ovalbumin B cell receptor (BCR)-restricted OB1 mice as a proof of principle. The PhIP-seq approach was then utilized to interrogate three distinct autoimmune disease models. First, serum from Lyn-/- IgD+/- mice with lupus-like disease was used to identify nuclear and apoptotic bleb reactivities, lending support to the hypothesis that apoptosis is a shared origin of these antigens. Second, serum from non-obese diabetic (NOD) mice, a polygenic model of pancreas-specific autoimmunity, enriched peptides derived from both insulin and predicted pancreatic proteins. Lastly, Aire-/- mouse sera were used to identify numerous auto-antigens, many of which were also observed in previous studies of humans with autoimmune polyendocrinopathy syndrome type 1 (APS1) carrying recessive mutations in AIRE. Among these were peptides derived from Perilipin-1, a validated autoimmune biomarker of generalized acquired lipodystrophy in humans. Autoreactivity to Perilipin-1 correlated with lymphocyte infiltration in adipose tissue and underscores the approach in revealing previously unknown specificities. These experiments support the use of murine proteome-wide PhIP-seq for antigenic profiling and autoantibody discovery, which may be employed to study a range of immune perturbations in mouse models of autoimmunity.

6.
J Exp Med ; 220(7)2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37074415

RESUMO

Autoinflammatory diseases include a number of monogenic systemic inflammatory diseases, as well as acquired autoinflammatory diseases such as gout. Here, we show that the myeloid Src-family kinases Hck, Fgr, and Lyn are critical for experimental models of gout, as well as for genetically determined systemic inflammation in the Ptpn6me-v/me-v (motheaten viable) mouse model. The Hck-/-Fgr-/-Lyn-/- mutation abrogated various monosodium urate (MSU) crystal-induced pro-inflammatory responses of neutrophils, and protected mice from the development of gouty arthritis. The Src-family inhibitor dasatinib abrogated MSU crystal-induced responses of human neutrophils and reduced experimental gouty arthritis in mice. The Hck-/-Fgr-/-Lyn-/- mutation also abrogated spontaneous inflammation and prolonged the survival of the Ptpn6me-v/me-v mice. Spontaneous adhesion and superoxide release of Ptpn6me-v/me-v neutrophils were also abolished by the Hck-/-Fgr-/-Lyn-/- mutation. Excessive activation of tyrosine phosphorylation pathways in myeloid cells may characterize a subset of autoinflammatory diseases.


Assuntos
Artrite Gotosa , Gota , Doenças Hereditárias Autoinflamatórias , Camundongos , Humanos , Animais , Quinases da Família src/metabolismo , Neutrófilos/metabolismo , Proteínas Proto-Oncogênicas c-hck/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Artrite Gotosa/metabolismo , Gota/metabolismo , Inflamação/metabolismo , Doenças Hereditárias Autoinflamatórias/metabolismo
7.
Am J Pathol ; 193(6): 702-724, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36868467

RESUMO

HIV-1-associated nephropathy (HIVAN) is a severe complication of HIV-1 infection. To gain insight into the pathogenesis of kidney disease in the setting of HIV, a transgenic (Tg) mouse model [CD4C/HIV-negative regulator factor (Nef)] was used in which HIV-1 nef expression is under control of regulatory sequences (CD4C) of the human CD4 gene, thus allowing expression in target cells of the virus. These Tg mice develop a collapsing focal segmental glomerulosclerosis associated with microcystic dilatation, similar to human HIVAN. To identify kidney cells permissive to the CD4C promoter, CD4C reporter Tg lines were used. They showed preferential expression in glomeruli, mainly in mesangial cells. Breeding CD4C/HIV Tg mice on 10 different mouse backgrounds showed that HIVAN was modulated by host genetic factors. Studies of gene-deficient Tg mice revealed that the presence of B and T cells and that of several genes was dispensable for the development of HIVAN: those involved in apoptosis (Trp53, Tnfsf10, Tnf, Tnfrsf1b, and Bax), in immune cell recruitment (Ccl3, Ccl2, Ccr2, Ccr5, and Cx3cr1), in nitric oxide (NO) formation (Nos3 and Nos2), or in cell signaling (Fyn, Lck, and Hck/Fgr). However, deletion of Src partially and that of Hck/Lyn largely abrogated its development. These data suggest that Nef expression in mesangial cells through hematopoietic cell kinase (Hck)/Lck/Yes novel tyrosine kinase (Lyn) represents important cellular and molecular events for the development of HIVAN in these Tg mice.


Assuntos
Nefropatia Associada a AIDS , Infecções por HIV , Camundongos , Humanos , Animais , Proteínas Tirosina Quinases/metabolismo , Nefropatia Associada a AIDS/genética , Nefropatia Associada a AIDS/patologia , Camundongos Transgênicos , Infecções por HIV/complicações , Tirosina , Quinases da Família src , Proteínas Proto-Oncogênicas c-hck
8.
Front Immunol ; 13: 1049079, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466913

RESUMO

Background: Psoriasis is a chronic skin disease associated with deregulated interplays between immune cells and keratinocytes. Neutrophil accumulation in the skin is a histological feature that characterizes psoriasis. However, the role of neutrophils in psoriasis onset and development remains poorly understood. Methods: In this study, we utilized the model of psoriasiform dermatitis, caused by the repeated topical application of an imiquimod containing cream, in neutrophil-depleted mice or in mice carrying impairment in neutrophil functions, including p47phox -/- mice (lacking a cytosolic subunit of the phagocyte nicotinamide adenine dinucleotide phosphate - NADPH - oxidase) and Sykfl/fl MRP8-cre+ mice (carrying the specific deletion of the Syk kinase in neutrophils only), to elucidate the specific contribution of neutrophils to psoriasis development. Results: By analyzing disease development/progression in neutrophil-depleted mice, we now report that neutrophils act as negative modulators of disease propagation and exacerbation by inhibiting gammadelta T cell effector functions via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-mediated reactive oxygen species (ROS) production. We also report that Syk functions as a crucial molecule in determining the outcome of neutrophil and γδ T cell interactions. Accordingly, we uncover that a selective impairment of Syk-dependent signaling in neutrophils is sufficient to reproduce the enhancement of skin inflammation and γδ T cell infiltration observed in neutrophil-depleted mice. Conclusions: Overall, our findings add new insights into the specific contribution of neutrophils to disease progression in the IMQ-induced mouse model of psoriasis, namely as negative regulatory cells.


Assuntos
Eczema , Psoríase , Camundongos , Animais , Imiquimode , Neutrófilos , NADP , Psoríase/induzido quimicamente , Modelos Animais de Doenças , NADPH Oxidases/genética , Progressão da Doença
9.
JCI Insight ; 7(21)2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36107633

RESUMO

Acute kidney injury (AKI) represents a common complication in critically ill patients that is associated with increased morbidity and mortality. In a murine AKI model induced by ischemia/reperfusion injury (IRI), we show that glutamine significantly decreases kidney damage and improves kidney function. We demonstrate that glutamine causes transcriptomic and proteomic reprogramming in murine renal tubular epithelial cells (TECs), resulting in decreased epithelial apoptosis, decreased neutrophil recruitment, and improved mitochondrial functionality and respiration provoked by an ameliorated oxidative phosphorylation. We identify the proteins glutamine gamma glutamyltransferase 2 (Tgm2) and apoptosis signal-regulating kinase (Ask1) as the major targets of glutamine in apoptotic signaling. Furthermore, the direct modulation of the Tgm2-HSP70 signalosome and reduced Ask1 activation resulted in decreased JNK activation, leading to diminished mitochondrial intrinsic apoptosis in TECs. Glutamine administration attenuated kidney damage in vivo during AKI and TEC viability in vitro under inflammatory or hypoxic conditions.


Assuntos
Injúria Renal Aguda , Glutamina , Humanos , Camundongos , Animais , Glutamina/farmacologia , Glutamina/metabolismo , Proteômica , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/metabolismo , Apoptose/fisiologia , Estresse Oxidativo , Células Epiteliais/metabolismo
11.
Sci Adv ; 8(25): eabl7882, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35731867

RESUMO

Although immunotherapy has revolutionized cancer treatment, many immunogenic tumors remain refractory to treatment. This can be largely attributed to an immunologically "cold" tumor microenvironment characterized by an accumulation of immunosuppressive myeloid cells and exclusion of activated T cells. Here, we demonstrate that genetic ablation or therapeutic inhibition of the myeloid-specific hematopoietic cell kinase (HCK) enables activity of antagonistic anti-programmed cell death protein 1 (anti-PD1), anti-CTLA4, or agonistic anti-CD40 immunotherapies in otherwise refractory tumors and augments response in treatment-susceptible tumors. Mechanistically, HCK ablation reprograms tumor-associated macrophages and dendritic cells toward an inflammatory endotype and enhances CD8+ T cell recruitment and activation when combined with immunotherapy in mice. Meanwhile, therapeutic inhibition of HCK in humanized mice engrafted with patient-derived xenografts counteracts tumor immunosuppression, improves T cell recruitment, and impairs tumor growth. Collectively, our results suggest that therapeutic targeting of HCK activity enhances response to immunotherapy by simultaneously stimulating immune cell activation and inhibiting the immunosuppressive tumor microenvironment.

12.
Sci Adv ; 8(16): eabj5227, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35452291

RESUMO

Here, we report that the LynB splice variant of the Src-family kinase Lyn exerts a dominant immunosuppressive function in vivo, whereas the LynA isoform is uniquely required to restrain autoimmunity in female mice. We used CRISPR-Cas9 gene editing to constrain lyn splicing and expression, generating single-isoform LynA knockout (LynAKO) or LynBKO mice. Autoimmune disease in total LynKO mice is characterized by production of antinuclear antibodies, glomerulonephritis, impaired B cell development, and overabundance of activated B cells and proinflammatory myeloid cells. Expression of LynA or LynB alone uncoupled the developmental phenotype from the autoimmune disease: B cell transitional populations were restored, but myeloid cells and differentiated B cells were dysregulated. These changes were isoform-specific, sexually dimorphic, and distinct from the complete LynKO. Despite the apparent differences in disease etiology and penetrance, loss of either LynA or LynB had the potential to induce severe autoimmune disease with parallels to human systemic lupus erythematosus (SLE).

13.
Blood ; 139(14): 2130-2144, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-34624098

RESUMO

Modulation of neutrophil recruitment and function is crucial for targeting inflammatory cells to sites of infection to combat invading pathogens while, at the same time, limiting host tissue injury or autoimmunity. The underlying mechanisms regulating recruitment of neutrophils, 1 of the most abundant inflammatory cells, have gained increasing interest over the years. The previously described classical recruitment cascade of leukocytes has been extended to include capturing, rolling, adhesion, crawling, and transmigration, as well as a reverse-transmigration step that is crucial for balancing immune defense and control of remote organ endothelial leakage. Current developments in the field emphasize the importance of cellular interplay, tissue environmental cues, circadian rhythmicity, detection of neutrophil phenotypes, differential chemokine sensing, and contribution of distinct signaling components to receptor activation and integrin conformations. The use of therapeutics modulating neutrophil activation responses, as well as mutations causing dysfunctional neutrophil receptors and impaired signaling cascades, have been defined in translational animal models. Human correlates of such mutations result in increased susceptibility to infections or organ damage. This review focuses on current advances in the understanding of the regulation of neutrophil recruitment and functionality and translational implications of current discoveries in the field with a focus on acute inflammation and sepsis.


Assuntos
Ativação de Neutrófilo , Neutrófilos , Animais , Humanos , Inflamação , Integrinas , Infiltração de Neutrófilos
14.
J Neuroinflammation ; 18(1): 302, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34952603

RESUMO

BACKGROUND: Spinal cord injury elicits widespread inflammation that can exacerbate long-term neurologic deficits. Neutrophils are the most abundant immune cell type to invade the spinal cord in the early acute phase after injury, however, their role in secondary pathogenesis and functional recovery remains unclear. We have previously shown that neutrophil functional responses during inflammation are augmented by spleen tyrosine kinase, Syk, a prominent intracellular signaling enzyme. In this study, we evaluated the contribution of Syk towards neutrophil function and long-term neurologic deficits after spinal cord injury. METHODS: Contusive spinal cord injury was performed at thoracic vertebra level 9 in mice with conditional deletion of Syk in neutrophils (Sykf/fMRP8-Cre). Hindlimb locomotor recovery was evaluated using an open-field test for 35 days following spinal cord injury. Long-term white matter sparing was assessed using eriochrome cyanide staining. Blood-spinal cord barrier disruption was evaluated by immunoblotting. Neutrophil infiltration, activation, effector functions, and cell death were determined by flow cytometry. Cytokine and chemokine expression in neutrophils was assessed using a gene array. RESULTS: Syk deficiency in neutrophils improved long-term functional recovery after spinal cord injury, but did not promote long-term white matter sparing. Neutrophil activation, cytokine expression, and cell death in the acutely injured spinal cord were attenuated by the genetic loss of Syk while neutrophil infiltration and effector functions were not affected. Acute blood-spinal cord barrier disruption was also unaffected by Syk deficiency in neutrophils. CONCLUSIONS: Syk facilitates specific neutrophil functional responses to spinal cord injury including activation, cytokine expression, and cell death. Long-term neurologic deficits are exacerbated by Syk signaling in neutrophils independent of acute blood-spinal cord barrier disruption and long-term white matter sparing. These findings implicate Syk in pathogenic neutrophil activities that worsen long-term functional recovery after spinal cord injury.


Assuntos
Doenças do Sistema Nervoso/etiologia , Doenças do Sistema Nervoso/patologia , Ativação de Neutrófilo , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/patologia , Baço/enzimologia , Quinase Syk/genética , Animais , Apoptose , Morte Celular , Quimiocinas/biossíntese , Citocinas/biossíntese , Feminino , Membro Posterior/inervação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos , Recuperação de Função Fisiológica , Substância Branca/patologia
15.
J Immunol ; 207(9): 2288-2296, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34588218

RESUMO

B cell signaling for activation via the BCR occurs as an isolated event only in vitro; in real life, BCR signaling takes place within a complex milieu that involves interactions with agents that trigger additional receptors. Chief among these is IL-4. We have shown that BCR signaling is reprogrammed by IL-4 receptor engagement and that this reprogramming involves creation of a new, signalosome-independent, Lyn-dependent alternate signaling pathway in B cells isolated from BALB/cByJ mice. A unique aspect of the alternate pathway is protein kinase Cδ (PKCδ) phosphorylation. In dissecting this pathway, we unexpectedly found that Lyn is associated with IL-4Rα, that IL-4 induces Lyn activation, and that Lyn immunoprecipitated from IL-4-treated B cells capably phosphorylates PKCδ in a cell-free system. However, PKCδ phosphorylation does not occur in the absence of BCR triggering in vivo. This raised the question of why IL-4 alone failed to produce PKCδ phosphorylation. We considered the possibility that Lyn and PKCδ may be spatially separated. As expected, before any treatment, Lyn is located primarily in the membrane fraction, whereas PKCδ is located mainly in the cytosol fraction. However, when anti-Ig follows IL-4 treatment, PKCδ is found in the membrane fraction and phosphorylated. This translocation of PKCδ to the membrane fraction is not affected by loss of Lyn, although PKCδ phosphorylation requires Lyn. Thus, PKCδ phosphorylation through the alternate pathway represents the result of signal integration, whereby neither IL-4 nor anti-Ig working alone produces this outcome, but together they achieve this result by Lyn activation (IL-4) and PKCδ translocation (IL-4 followed by anti-Ig).


Assuntos
Linfócitos B/imunologia , Membrana Celular/metabolismo , Citosol/metabolismo , Proteína Quinase C-delta/metabolismo , Animais , Células Cultivadas , Camundongos , Camundongos Endogâmicos BALB C , Fosforilação , Transporte Proteico , Receptor Cross-Talk , Receptores de Antígenos de Linfócitos B/metabolismo , Receptores de Interleucina-4/metabolismo , Transdução de Sinais , Quinases da Família src/metabolismo
16.
J Virol ; 95(17): e0047121, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34106001

RESUMO

Human immunodeficiency virus (HIV) or simian immunodeficiency virus (SIV) infection causes myelodysplasia, anemia, and accumulation of inflammatory monocytes (CD14+ CD16+) through largely unknown cellular and molecular pathways. The mouse cells thought to be equivalent to human CD14+ CD16+ cells are CD11b+ Gr1+ myeloid-derived suppressor cells (MDSC). We used HIV transgenic (Tg) mouse models to study MDSC, namely, CD4C/Nef Tg mice expressing nef in dendritic cells (DC), pDC, CD4+ T, and other mature and immature myeloid cells and CD11c/Nef Tg mice with a more restricted expression, mainly in DC and pDC. Both Tg strains showed expansion of granulocytic and CD11b+ Gr1low/int cells with MDSC characteristics. Fetal liver cell transplantation revealed that this expansion was stroma-independent and abrogated in mixed Tg/non-Tg 50% chimera. Tg bone marrow (BM) erythroid progenitors were decreased and myeloid precursors increased, suggesting an aberrant differentiation likely driving CD11b+ Gr1+ cell expansion, apparently cell autonomously in CD4C/Nef Tg mice and likely through a bystander effect in CD11c/Nef Tg mice. Hck was activated in Tg spleen, and Nef-mediated CD11b+ Gr1+ cell expansion was abrogated in Hck/Lyn-deficient Nef Tg mice, indicating a requirement of Hck/Lyn for this Nef function. IL-17 and granulocyte colony-stimulating factor (G-CSF) were elevated in Nef Tg mice. Increased G-CSF levels were normalized in Tg mice treated with anti-IL-17 antibodies. Therefore, Nef expression in myeloid precursors causes severe BM failure, apparently cell autonomously. More cell-restricted expression of Nef in DC and pDC appears sufficient to induce BM differentiation impairment, granulopoiesis, and expansion of MDSC at the expense of erythroid maturation, with IL-17→G-CSF as one likely bystander contributor. IMPORTANCE HIV-1 and SIV infection often lead to myelodysplasia, anemia, and accumulation of inflammatory monocytes (CD14+ CD16+), with the latter likely involved in neuroAIDS. We found that some transgenic (Tg) mouse models of AIDS also develop accumulation of mature and immature cells of the granulocytic lineage, decreased erythroid precursors, and expansion of MDSC (equivalent to human CD14+ CD16+ cells). We identified Nef as being responsible for these phenotypes, and its expression in mouse DC appears sufficient for their development through a bystander mechanism. Nef expression in myeloid progenitors may also favor myeloid cell expansion, likely in a cell-autonomous way. Hck/Lyn is required for the Nef-mediated accumulation of myeloid cells. Finally, we identified G-CSF under the control of IL-17 as one bystander mediator of MDSC expansion. Our findings provide a framework to determine whether the Nef>Hck/Lyn>IL-17>G-CSF pathway is involved in human AIDS and whether it represents a valid therapeutic target.


Assuntos
Fator Estimulador de Colônias de Granulócitos/metabolismo , Infecções por HIV/imunologia , Interleucina-17/metabolismo , Células Supressoras Mieloides/imunologia , Proteínas Proto-Oncogênicas c-hck/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo , Quinases da Família src/metabolismo , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Diferenciação Celular , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/virologia , Feminino , Fator Estimulador de Colônias de Granulócitos/genética , Granulócitos/imunologia , Granulócitos/metabolismo , Granulócitos/patologia , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/imunologia , Humanos , Interleucina-17/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/virologia , Células Supressoras Mieloides/metabolismo , Células Supressoras Mieloides/virologia , Proteínas Proto-Oncogênicas c-hck/genética , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética , Quinases da Família src/genética
17.
Diabetes Care ; 44(8): 1816-1825, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34172489

RESUMO

OBJECTIVE: Multiple genome-wide association studies have identified a strong genetic linkage between the SKAP2 locus and type 1 diabetes (T1D), but how this leads to disease remains obscure. Here, we characterized the functional consequence of a novel SKAP2 coding mutation in a patient with T1D to gain further insight into how this impacts immune tolerance. RESEARCH DESIGN AND METHODS: We identified a 24-year-old individual with T1D and other autoimmune and inflammatory conditions. The proband and first-degree relatives were recruited for whole-exome sequencing. Functional studies of the protein variant were performed using a cell line and primary myeloid immune cells collected from family members. RESULTS: Sequencing identified a de novo SKAP2 variant (c.457G>A, p.Gly153Arg) in the proband. Assays using monocyte-derived macrophages from the individual revealed enhanced activity of integrin pathways and a migratory phenotype in the absence of chemokine stimulation, consistent with SKAP2 p.Gly153Arg being constitutively active. The p.Gly153Arg variant, located in the well-conserved lipid-binding loop, induced similar phenotypes when expressed in a human macrophage cell line. SKAP2 p.Gly153Arg is a gain-of-function, pathogenic mutation that disrupts myeloid immune cell function, likely resulting in a break in immune tolerance and T1D. CONCLUSIONS: SKAP2 plays a key role in myeloid cell activation and migration. This particular mutation in a patient with T1D and multiple autoimmune conditions implicates a role for activating SKAP2 variants in autoimmune T1D.


Assuntos
Doenças Autoimunes , Diabetes Mellitus Tipo 1 , Peptídeos e Proteínas de Sinalização Intracelular , Adulto , Diabetes Mellitus Tipo 1/genética , Estudo de Associação Genômica Ampla , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mutação , Fenótipo , Adulto Jovem
18.
Cell Rep ; 35(7): 109142, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34010642

RESUMO

The interaction of the human FcγRIIA with immune complexes (ICs) promotes neutrophil activation and thus must be tightly controlled to avoid damage to healthy tissue. Here, we demonstrate that a fungal-derived soluble ß-1,3/1,6-glucan binds to the glycosphingolipid long-chain lactosylceramide (LacCer) to reduce FcγRIIA-mediated recruitment to immobilized ICs under flow, a process requiring high-affinity FcγRIIA-immunoglobulin G (IgG) interactions. The inhibition requires Lyn phosphorylation of SHP-1 phosphatase and the FcγRIIA immunotyrosine-activating motif. ß-glucan reduces the effective 2D affinity of FcγRIIA for IgG via Lyn and SHP-1 and, in vivo, inhibits FcγRIIA-mediated neutrophil recruitment to intravascular IgG deposited in the kidney glomeruli in a glycosphingolipid- and Lyn-dependent manner. In contrast, ß-glucan did not affect FcγR functions that bypass FcγR affinity for IgG. In summary, we have identified a pathway for modulating the 2D affinity of FcγRIIA for ligand that relies on LacCer-Lyn-SHP-1-mediated inhibitory signaling triggered by ß-glucan, a previously described activator of innate immunity.


Assuntos
Glicoesfingolipídeos/metabolismo , Ligantes , Receptores de IgG/metabolismo , Humanos , Transdução de Sinais
19.
Nat Immunol ; 22(3): 381-390, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33589816

RESUMO

The integrin α4ß7 selectively regulates lymphocyte trafficking and adhesion in the gut and gut-associated lymphoid tissue (GALT). Here, we describe unexpected involvement of the tyrosine phosphatase Shp1 and the B cell lectin CD22 (Siglec-2) in the regulation of α4ß7 surface expression and gut immunity. Shp1 selectively inhibited ß7 endocytosis, enhancing surface α4ß7 display and lymphocyte homing to GALT. In B cells, CD22 associated in a sialic acid-dependent manner with integrin ß7 on the cell surface to target intracellular Shp1 to ß7. Shp1 restrained plasma membrane ß7 phosphorylation and inhibited ß7 endocytosis without affecting ß1 integrin. B cells with reduced Shp1 activity, lacking CD22 or expressing CD22 with mutated Shp1-binding or carbohydrate-binding domains displayed parallel reductions in surface α4ß7 and in homing to GALT. Consistent with the specialized role of α4ß7 in intestinal immunity, CD22 deficiency selectively inhibited intestinal antibody and pathogen responses.


Assuntos
Linfócitos B/enzimologia , Imunidade nas Mucosas , Cadeias beta de Integrinas/metabolismo , Integrinas/metabolismo , Mucosa Intestinal/enzimologia , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Animais , Linfócitos B/imunologia , Linfócitos B/virologia , Quimiotaxia de Leucócito , Modelos Animais de Doenças , Endocitose , Feminino , Cadeias beta de Integrinas/imunologia , Integrinas/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/virologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 6/deficiência , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Rotavirus/imunologia , Rotavirus/patogenicidade , Infecções por Rotavirus/genética , Infecções por Rotavirus/imunologia , Infecções por Rotavirus/metabolismo , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/deficiência , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/genética , Transdução de Sinais , Técnicas de Cultura de Tecidos
20.
Front Immunol ; 11: 576310, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33133093

RESUMO

Shp1, encoded by the gene Ptpn6, is a protein tyrosine phosphatase that transduces inhibitory signals downstream of immunoreceptors in many immune cell types. Blocking Shp1 activity represents an exciting potential immunotherapeutic strategy for the treatment of cancer, as Shp1 inhibition would be predicted to unleash both innate and adaptive immunity against tumor cells. Antibodies blocking the interaction between CD47 on tumor cells and SIRPα on macrophages enhance macrophage phagocytosis, show efficacy in preclinical tumor models, and are being evaluated in the clinic. Here we found that Shp1 bound to phosphorylated peptide sequences derived from SIRPα and transduced the anti-phagocytic signal, as Shp1 loss in mouse bone marrow-derived macrophages increased phagocytosis of tumor cells in vitro. We also generated a novel mouse model to evaluate the impact of global, inducible Ptpn6 deletion on anti-tumor immunity. We found that inducible Shp1 loss drove an inflammatory disease in mice that was phenotypically similar to that seen when Ptpn6 is knocked out from birth. This indicates that acute perturbation of Shp1 in vivo could drive hyperactivation of immune cells, which could be therapeutically beneficial, though at the risk of potential toxicity. In this model, we found that Shp1 loss led to robust anti-tumor immunity against two immune-rich syngeneic tumor models that are moderately inflamed though not responsive to checkpoint inhibitors, MC38 and E0771. Shp1 loss did not promote anti-tumor activity in the non-inflamed B16F10 model. The observed activity in MC38 and E0771 tumors was likely due to effects of both innate and adaptive immune cells. Following Shp1 deletion, we observed increases in intratumoral myeloid cells in both models, which was more striking in E0771 tumors. E0771 tumors also contained an increased ratio of effector to regulatory T cells following Shp1 loss. This was not observed for MC38 tumors, though we did find increased levels of IFNγ, a cytokine produced by effector T cells, in these tumors. Overall, our preclinical data suggested that targeting Shp1 may be an attractive therapeutic strategy for boosting the immune response to cancer via a mechanism involving both innate and adaptive leukocytes.


Assuntos
Adenocarcinoma/enzimologia , Neoplasias da Mama/enzimologia , Neoplasias do Colo/enzimologia , Melanoma Experimental/enzimologia , Proteína Tirosina Fosfatase não Receptora Tipo 6/deficiência , Neoplasias Cutâneas/enzimologia , Macrófagos Associados a Tumor/enzimologia , Imunidade Adaptativa , Adenocarcinoma/imunologia , Adenocarcinoma/patologia , Adenocarcinoma/terapia , Animais , Antígenos de Diferenciação/metabolismo , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Neoplasias do Colo/imunologia , Neoplasias do Colo/patologia , Neoplasias do Colo/terapia , Feminino , Humanos , Imunidade Inata , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Melanoma Experimental/terapia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fagocitose , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Receptores Imunológicos/metabolismo , Transdução de Sinais , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/terapia , Células THP-1 , Carga Tumoral , Microambiente Tumoral , Macrófagos Associados a Tumor/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA