Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 53(17): 10070-10081, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31432661

RESUMO

Increasing global reliance on stormwater control measures to reduce discharge to surface water, increase groundwater recharge, and minimize contaminant delivery to receiving waterbodies necessitates improved understanding of stormwater-contaminant profiles. A multiagency study of organic and inorganic chemicals in urban stormwater from 50 runoff events at 21 sites across the United States demonstrated that stormwater transports substantial mixtures of polycyclic aromatic hydrocarbons, bioactive contaminants (pesticides and pharmaceuticals), and other organic chemicals known or suspected to pose environmental health concern. Numerous organic-chemical detections per site (median number of chemicals detected = 73), individual concentrations exceeding 10 000 ng/L, and cumulative concentrations up to 263 000 ng/L suggested concern for potential environmental effects during runoff events. Organic concentrations, loads, and yields were positively correlated with impervious surfaces and highly developed urban catchments. Episodic storm-event organic concentrations and loads were comparable to and often exceeded those of daily wastewater plant discharges. Inorganic chemical concentrations were generally dilute in concentration and did not exceed chronic aquatic life criteria. Methylmercury was measured in 90% of samples with concentrations that ranged from 0.05 to 1.0 ng/L.


Assuntos
Água Subterrânea , Praguicidas , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Monitoramento Ambiental , Chuva , Estados Unidos
2.
Water Res ; 46(1): 176-86, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22088271

RESUMO

Animal agriculture in watersheds produces manure bacteria that may contaminate surface waters and put public health at risk. We measured fecal indicator bacteria (commensal Escherichia coli and fecal enterococci) and manure pathogens (Salmonella and E. coli 0157:H7), and physical-chemical parameters in pond inflow, within pond, pond outflow, and pond sediments in three ponds in agricultural watersheds. Bishop Pond with perennial inflow and outflow is located in the Piedmont, and Ponds A and C with ephemeral inflow and outflow in the Coastal Plain of Georgia. Bromide and chloride tracer experiments at Bishop Pond reflected a residence time much greater than that estimated by two models, and indicated that complete mixing within Bishop Pond was never obtained. The long residence time meant that fecal bacteria were exposed to solar UV-radiation and microbial predation. At Bishop Pond outflow concentrations of fecal indicator bacteria were significantly less than inflow concentrations; such was not observed at Ponds A and C. Both Salmonella and E. coli 0157:H7 were measured when concomitant concentrations of commensal E. coli were below the criterion for surface water impairment indicating problems with the effectiveness of indicator organisms. Bishop Pond improved down stream water quality; whereas, Ponds A and C with ephemeral inflow and outflow and possibly greater nutrient concentrations within the two ponds appeared to be less effective in improving down stream water quality.


Assuntos
Agricultura , Bactérias/citologia , Ecossistema , Fezes/microbiologia , Viabilidade Microbiana , Lagoas/microbiologia , Microbiologia da Água , Brometos/análise , Cloretos/análise , Contagem de Colônia Microbiana , Escherichia coli/citologia , Escherichia coli/isolamento & purificação , Georgia , Modelos Lineares , Salmonella/citologia , Salmonella/isolamento & purificação , Fatores de Tempo
3.
J Environ Qual ; 34(5): 1851-9, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16151237

RESUMO

Managed riparian forest buffers are an important conservation practice but there are little data on the water quality effects of buffer management. We measured surface runoff volumes and nutrient concentrations and loads in a riparian buffer system consisting of (moving down slope from the field) a grass strip, a managed forest, and an unmanaged forest. The managed forest consisted of sections of clear-cut, thinned, and mature forest. The mature forest had significantly lower flow-weighted concentrations of nitrate, ammonium, total Kjeldahl N (TKN), sediment TKN, total N (nitrate + TKN), dissolved molybdate reactive P (DMRP), total P, and chloride. The average buffer represented the conditions along a stream reach with a buffer system in different stages of growth. Compared with the field output, flow-weighted concentrations of nitrate, ammonium, DMRP, and total P decreased significantly within the buffer and flow-weighted concentrations of TKN, total N, and chloride increased significantly within the buffer. All loads decreased significantly from the field to the middle of the buffer, but most loads increased from the middle of the buffer to the sampling point nearest the stream because surface runoff volume increased near the stream. The largest percentage reduction of the incoming nutrient load (at least 65% for all nutrient forms) took place in the grass buffer zone because of the large decrease (68%) in flow. The average buffer reduced loadings for all nutrient species, from 27% for TKN to 63% for sediment P. The managed forest and grass buffer combined was an effective buffer system.


Assuntos
Monitoramento Ambiental/estatística & dados numéricos , Água Doce/química , Nitratos/análise , Fósforo/análise , Rios , Árvores , Cloretos/análise , Georgia , Compostos de Amônio Quaternário/análise
4.
Pest Manag Sci ; 59(6-7): 691-8, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12846319

RESUMO

We present an overview of USDA Agricultural Research Service (ARS) computer models and databases related to pest-management science, emphasizing current developments in environmental risk assessment and management simulation models. The ARS has a unique national interdisciplinary team of researchers in surface and sub-surface hydrology, soil and plant science, systems analysis and pesticide science, who have networked to develop empirical and mechanistic computer models describing the behavior of pests, pest responses to controls and the environmental impact of pest-control methods. Historically, much of this work has been in support of production agriculture and in support of the conservation programs of our 'action agency' sister, the Natural Resources Conservation Service (formerly the Soil Conservation Service). Because we are a public agency, our software/database products are generally offered without cost, unless they are developed in cooperation with a private-sector cooperator. Because ARS is a basic and applied research organization, with development of new science as our highest priority, these products tend to be offered on an 'as-is' basis with limited user support except for cooperating R&D relationship with other scientists. However, rapid changes in the technology for information analysis and communication continually challenge our way of doing business.


Assuntos
Agricultura/métodos , Controle de Pragas/métodos , Projetos de Pesquisa , Software , United States Department of Agriculture , Simulação por Computador , Bases de Dados Factuais , Praguicidas/metabolismo , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA