Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Immunother Cancer ; 9(10)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34599030

RESUMO

BACKGROUND: The human tumor microenvironment (TME) is a complex and dynamic milieu of diverse acellular and cellular components, creating an immunosuppressive environment, which contributes to tumor progression. We have previously shown that phosphatidylserine (PS) expressed on the surface of exosomes isolated from human TMEs is causally linked to T-cell immunosuppression, representing a potential immunotherapeutic target. In this study, we investigated the effect of ExoBlock, a novel PS-binding molecule, on T-cell responses in the TME. METHODS: We designed and synthesized a new compound, (ZnDPA)6-DP-15K, a multivalent PS binder named ExoBlock. The PS-binding avidity of ExoBlock was tested using an in vitro competition assay. The ability of this molecule to reverse exosome-mediated immunosuppression in vitro was tested using human T-cell activation assays. The in vivo therapeutic efficacy of ExoBlock was then tested in two different human tumor xenograft models, the melanoma-based xenomimetic (X-)mouse model, and the ovarian tumor-based omental tumor xenograft (OTX) model. RESULTS: ExoBlock was able to bind PS with high avidity and was found to consistently and significantly block the immunosuppressive activity of human ovarian tumor and melanoma-associated exosomes in vitro. ExoBlock was also able to significantly enhance T cell-mediated tumor suppression in vivo in both the X-mouse and the OTX model. In the X-mouse model, ExoBlock suppressed tumor recurrence in a T cell-dependent manner. In the OTX model, ExoBlock treatment resulted in an increase in the number as well as function of CD4 and CD8 T cells in the TME, which was associated with a reduction in tumor burden and metastasis, as well as in the number of circulating PS+ exosomes in tumor-bearing mice. CONCLUSION: Our results establish that targeting exosomal PS in TMEs with ExoBlock represents a promising strategy to enhance antitumor T-cell responses.


Assuntos
Exossomos/metabolismo , Neoplasias/imunologia , Neoplasias Ovarianas/genética , Fosfatidilserinas/metabolismo , Linfócitos T/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Neoplasias Ovarianas/patologia , Microambiente Tumoral
2.
Clin Transl Immunology ; 10(2): e1246, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33552509

RESUMO

OBJECTIVES: With a rapidly growing list of candidate immune-based cancer therapeutics, there is a critical need to generate highly reliable animal models to preclinically evaluate the efficacy of emerging immune-based therapies, facilitating successful clinical translation. Our aim was to design and validate a novel in vivo model (called Xenomimetic or 'X' mouse) that allows monitoring of the ability of human tumor-specific T cells to suppress tumor growth following their entry into the tumor. METHODS: Tumor xenografts are established rapidly in the greater omentum of globally immunodeficient NOD-scid IL2Rγnull (NSG) mice following an intraperitoneal injection of melanoma target cells expressing tumor neoantigen peptides, as well as green fluorescent protein and/or luciferase. Changes in tumor burden, as well as in the number and phenotype of adoptively transferred patient-derived tumor neoantigen-specific T cells in response to immunotherapy, are measured by imaging to detect fluorescence/luminescence and flow cytometry, respectively. RESULTS: The tumors progress rapidly and disseminate in the mice unless patient-derived tumor-specific T cells are introduced. An initial T cell-mediated tumor arrest is later followed by a tumor escape, which correlates with the upregulation of the checkpoint molecules programmed cell death-1 (PD-1) and lymphocyte-activation gene 3 (LAG3) on T cells. Treatment with immune-based therapies that target these checkpoints, such as anti-PD-1 antibody (nivolumab) or interleukin-12 (IL-12), prevented or delayed the tumor escape. Furthermore, IL-12 treatment suppressed PD-1 and LAG3 upregulation on T cells. CONCLUSION: Together, these results validate the X-mouse model and establish its potential to preclinically evaluate the therapeutic efficacy of immune-based therapies.

3.
Immunol Invest ; 49(7): 726-743, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32299258

RESUMO

Background: T cells present in chronic inflammatory tissues such as nasal polyps (from chronic rhinosinusitis patients) have been demonstrated to be hypo-responsive to activation via the TCR, similar to tumor-specific T cells in multiple different human tumor microenvironments. While immunosuppressive exosomes have been known to contribute to the failure of the tumor-associated T cells to respond optimally to activation stimuli, it is not known whether they play a similar role in chronic inflammatory microenvironments. In the current study, we investigate whether exosomes derived from chronic inflammatory microenvironments contribute to the immune suppression of T cells. Methods: Exosomes were isolated by ultracentrifugation and characterized by size and composition using nanoparticle tracking analysis, scanning electron microscopy, antibody arrays and flow exometry. Immunosuppressive ability of the exosomes was measured by quantifying its effect on activation of T cells, using nuclear translocation of NFκB as an activation endpoint. Results: Exosomes were isolated and characterized from two different types of chronic inflammatory tissues - nasal polyps from chronic rhinosinusitis patients and synovial fluid from rheumatoid arthritis patients. These exosomes arrest the activation of T cells stimulated via the TCR. This immune suppression, like that which is seen in tumor microenvironments, is dependent in part upon a lipid, ganglioside GD3, which is expressed on the exosomal surface. Conclusion: Immunosuppressive exosomes present in non-malignant chronic inflammatory tissues represent a new T cell checkpoint, and potentially represent a novel therapeutic target to enhance the response to current therapies and prevent disease recurrences.


Assuntos
Microambiente Celular/imunologia , Exossomos/metabolismo , Imunomodulação , Inflamação/etiologia , Inflamação/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Artrite/etiologia , Artrite/metabolismo , Biomarcadores , Doença Crônica , Suscetibilidade a Doenças , Exossomos/ultraestrutura , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/ultraestrutura , Humanos , Imuno-Histoquímica , Imunofenotipagem , Inflamação/patologia , Metabolismo dos Lipídeos , Ativação Linfocitária/imunologia , NF-kappa B/metabolismo , Pólipos Nasais/etiologia , Pólipos Nasais/metabolismo , Pólipos Nasais/patologia , Transporte Proteico , Transdução de Sinais , Líquido Sinovial/metabolismo
4.
J Immunol ; 201(12): 3750-3758, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30446565

RESUMO

The tumor microenvironment is rendered immunosuppressive by a variety of cellular and acellular factors that represent potential cancer therapeutic targets. Although exosomes isolated from ovarian tumor ascites fluids have been previously reported to induce a rapid and reversible T cell arrest, the factors present on or within exosomes that contribute to immunosuppression have not been fully defined. In this study, we establish that GD3, a ganglioside expressed on the surface of exosomes isolated from human ovarian tumor ascites fluids, is causally linked to the functional arrest of T cells activated through their TCR. This arrest is inhibited by Ab blockade of exosomal GD3 or by the removal of GD3+ exosomes. Empty liposomes expressing GD3 on the surface also inhibit the activation of T cells, establishing that GD3 contributes to the functional arrest of T cells independent of factors present in exosomes. Finally, we demonstrate that the GD3-mediated arrest of the TCR activation is dependent upon sialic acid groups, because their enzymatic removal from exosomes or liposomes results in a loss of inhibitory capacity. Collectively, these data define GD3 as a potential immunotherapeutic target.


Assuntos
Líquido Ascítico/metabolismo , Exossomos/metabolismo , Gangliosídeos/metabolismo , Imunoterapia/métodos , Ácido N-Acetilneuramínico/metabolismo , Neoplasias Ovarianas/metabolismo , Linfócitos T/imunologia , Ascite , Células Cultivadas , Feminino , Humanos , Tolerância Imunológica , NF-kappa B/metabolismo , Estadiamento de Neoplasias , Neoplasias Ovarianas/imunologia , Microambiente Tumoral
5.
Cancer Immunol Res ; 6(2): 236-247, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29301753

RESUMO

Nano-sized membrane-encapsulated extracellular vesicles isolated from the ascites fluids of ovarian cancer patients are identified as exosomes based on their biophysical and compositional characteristics. We report here that T cells pulsed with these tumor-associated exosomes during TCR-dependent activation inhibit various activation endpoints including translocation of NFκB and NFAT into the nucleus, upregulation of CD69 and CD107a, production of cytokines, and cell proliferation. In addition, the activation of virus-specific CD8+ T cells that are stimulated with the cognate viral peptides presented in the context of class I MHC is also suppressed by the exosomes. The inhibition occurs without loss of cell viability and coincidentally with the binding and internalization of these exosomes. This exosome-mediated inhibition of T cells was transient and reversible: T cells exposed to exosomes can be reactivated once exosomes are removed. We conclude that tumor-associated exosomes are immunosuppressive and represent a therapeutic target, blockade of which would enhance the antitumor response of quiescent tumor-associated T cells and prevent the functional arrest of adoptively transferred tumor-specific T cells or chimeric antigen receptor T cells. Cancer Immunol Res; 6(2); 236-47. ©2018 AACR.


Assuntos
Microscopia Eletrônica de Transmissão/métodos , Linfócitos T/metabolismo , Proliferação de Células , Exossomos/imunologia , Feminino , Humanos , Neoplasias Ovarianas/imunologia
6.
Cancer Immunol Res ; 3(11): 1269-78, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26112921

RESUMO

The identification of immunosuppressive factors within human tumor microenvironments, and the ability to block these factors, would be expected to enhance patients' antitumor immune responses. We previously established that an unidentified factor, or factors, present in ovarian tumor ascites fluids reversibly inhibited the activation of T cells by arresting the T-cell signaling cascade. Ultracentrifugation of the tumor ascites fluid has now revealed a pellet that contains small extracellular vesicles (EV) with an average diameter of 80 nm. The T-cell arrest was determined to be causally linked to phosphatidylserine (PS) that is present on the outer leaflet of the vesicle bilayer, as a depletion of PS-expressing EV or a blockade of PS with anti-PS antibody significantly inhibits the vesicle-induced signaling arrest. The inhibitory EV were also isolated from solid tumor tissues. The presence of immunosuppressive vesicles in the microenvironments of ovarian tumors and our ability to block their inhibition of T-cell function represent a potential therapeutic target for patients with ovarian cancer.


Assuntos
Vesículas Extracelulares/imunologia , Neoplasias Ovarianas/imunologia , Fosfatidilserinas/fisiologia , Subpopulações de Linfócitos T/imunologia , Microambiente Tumoral/imunologia , Ascite/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Feminino , Humanos , Tolerância Imunológica , Imunofenotipagem , Lipídeos/imunologia , Ativação Linfocitária/imunologia , Fosfatidilserinas/metabolismo , Transdução de Sinais/imunologia
7.
Cancer Immun ; 13: 11, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23885217

RESUMO

Despite an initial response to chemotherapy, most patients with ovarian cancer eventually progress and succumb to their disease. Understanding why effector T cells that are known to infiltrate the tumor do not eradicate the disease after cytoreduction is critically important to the development of novel therapeutic strategies to augment tumor immunity and improve patient outcomes. Such studies have been hampered by the lack of a suitable in vivo model. We report here a simple and reliable model system in which ovarian tumor cell aggregates implanted intraperitoneally into severely immunodeficient NSG mice establish tumor microenvironments within the omentum. The rapid establishment of tumor xenografts within this small anatomically well-defined site enables the recovery, characterization, and quantification of tumor and tumor-associated T cells. We validate here the ability of the omental tumor xenograft (OTX) model to quantify changes in tumor cell number in response to therapy, to quantify changes in the tumor vasculature, and to demonstrate and study the immunosuppressive effects of the tumor microenvironment. Using the OTX model, we show that the tumor-associated T cells originally present within the tumor tissues are anergic and that fully functional autologous T cells injected into tumor-bearing mice localize within the tumor xenograft. The transferred T cells remain functional for up to 3 days within the tumor microenvironment but become unresponsive to activation after 7 days. The OTX model provides for the first time the opportunity to study in vivo the cellular and molecular events contributing to the arrest in T cell function in human ovarian tumors.


Assuntos
Neoplasias Ovarianas/irrigação sanguínea , Neoplasias Ovarianas/imunologia , Linfócitos T/imunologia , Animais , Modelos Animais de Doenças , Feminino , Xenoenxertos , Humanos , Imunoquímica , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neovascularização Patológica/imunologia , Neovascularização Patológica/patologia , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/terapia , Linfócitos T/patologia , Microambiente Tumoral
8.
Cancer Immun ; 13: 14, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23882159

RESUMO

Human memory T cells present in ovarian tumor ascites fluids fail to respond normally to stimulation via the T cell receptor (TCR). This immunosuppression is manifested by decreases in NF-κB and NFAT activation, IFN-γ production, and cell proliferation in response to TCR stimulation with immobilized antibodies to CD3 and CD28. The anergy of the tumor-associated T cells (TATs) is mediated by soluble factors present in ovarian tumor ascites fluids. The non-responsiveness of the T cells is quickly reversed when the cells are assayed in the absence of the ascites fluid, and is rapidly reestablished when a cell-free ascites fluid is added back to the T cells. Based upon the observed normal phosphorylation patterns of the TCR proximal signaling molecules, the inhibition of NF-κB, and NFAT activation in response to TCR stimulation, as well as the ability of the diacylglycerol analog PMA and the ionophore ionomycin to bypass the ascites fluid-induced TCR signaling arrest, the site of the arrest in the activation cascade appears to be at or just upstream of PLC-γ. An identical TCR signaling arrest pattern was observed when T cells derived from normal donor peripheral blood were incubated with either malignant or nonmalignant (cirrhotic) ascites fluids. The immunosuppressive activity of ascites fluids reported here suggests that soluble factors acting directly or indirectly upon T cells present within tumors contribute to the anergy that has previously been observed in T cells derived from malignant and nonmalignant inflammatory microenvironments. The soluble immunosuppressive factors represent potential therapeutic targets for ovarian cancer.


Assuntos
NF-kappa B/imunologia , Fatores de Transcrição NFATC/imunologia , Neoplasias Ovarianas/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Ascite/imunologia , Ascite/patologia , Feminino , Humanos , NF-kappa B/metabolismo , Fatores de Transcrição NFATC/metabolismo , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais
9.
Clin Immunol ; 132(1): 71-82, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19395317

RESUMO

Using a novel loading technique, IL-12 is reported here to be efficiently encapsulated within large multilamellar liposomes. The preclinical efficacy of the cytokine loaded liposomes to deliver IL-12 into human tumors and to reactive tumor-associated T cells in situ is tested using a human tumor xenograft model. IL-12 is released in vivo from these liposomes in a biologically active form when injected into tumor xenografts that are established by the subcutaneous implantation of non-disrupted pieces of human lung, breast or ovarian tumors into immunodeficient mice. The histological architecture of the original tumor tissue, including tumor-associated leukocytes, tumor cells and stromal cells is preserved anatomically and the cells remain functionally responsive to cytokines in these xenografts. The local and sustained release of IL-12 into the tumor microenvironment reactivates tumor-associated quiescent effector memory T cells to proliferate, produce and release IFN-gamma resulting in the killing of tumor cells in situ. Very little IL-12 is detected in the serum of mice for up to 5 days after an intratumoral injection of the IL-12 liposomes. We conclude that IL-12 loaded large multilamellar liposomes provide a safe method for the local and sustained delivery of IL-12 to tumors and a therapeutically effective way of reactivating existing tumor-associated T cells in human solid tumor microenvironments. The potential of this local in situ T cell re-stimulation to induce a systemic anti-tumor immunity is discussed.


Assuntos
Interleucina-12/imunologia , Lipossomos/química , Neoplasias Experimentais/imunologia , Linfócitos T/imunologia , Animais , Dicroísmo Circular , Sistemas de Liberação de Medicamentos , Humanos , Imuno-Histoquímica , Memória Imunológica/imunologia , Interleucina-12/administração & dosagem , Interleucina-12/química , Antígeno Ki-67/análise , Camundongos , Camundongos SCID , Neoplasias Experimentais/sangue , Neoplasias Experimentais/terapia , Espectrometria de Fluorescência , Linfócitos T/citologia , Linfócitos T/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Clin Immunol ; 118(1): 66-76, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16185929

RESUMO

Protein antigens have been covalently linked randomly to surface proteins on immature dendritic cells (DC). This has been achieved under physiological conditions using a heterobifunctional reagent that couples antigens to free thiol groups expressed on DC surface proteins. This results in a significant increase in the amount of antigen that is bound to DC, and the antigen/membrane protein complexes that are formed are rapidly internalized. DC, loaded covalently with either beta-galactosidase (beta-gal) or a tumor-associated immunoglobulin (Ig) when injected into mice, induce a beta-gal- or Ig-specific T cell response, and a protective anti-tumor immunity for tumors expressing either beta-gal or the targeted Ig. This response is shown here to be significantly greater than that which is induced by DC that are loaded with these antigens via the conventional antigen pulse protocol. These results establish a novel, safe, and viable approach of enhancing the effectiveness of DC-based vaccination strategies for B cell lymphoma.


Assuntos
Linfócitos B/imunologia , Vacinas Anticâncer/imunologia , Carcinoma/imunologia , Neoplasias do Colo/imunologia , Células Dendríticas/imunologia , Imunoglobulinas/farmacologia , Glicoproteínas de Membrana/farmacologia , Animais , Antígenos de Neoplasias/imunologia , Carcinoma/terapia , Linhagem Celular Tumoral , Neoplasias do Colo/terapia , Células Dendríticas/metabolismo , Células Dendríticas/transplante , Feminino , Antígenos de Histocompatibilidade Classe I/imunologia , Imunoglobulinas/metabolismo , Ativação Linfocitária , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Transplante de Neoplasias , Taxa de Sobrevida , Linfócitos T/citologia , Linfócitos T/imunologia
11.
Blood ; 104(3): 752-9, 2004 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-15054043

RESUMO

Previous studies have suggested that murine T cells are tolerant to epitopes derived from germ line variable regions of immunoglobulin (Ig) heavy (VH) or light chains. This has lead to the prediction that germ line VH-region epitopes found in neoplastic B cells cannot be used to provoke an antitumor immune response. To test these assumptions and address the question of how such a vaccine may alter the normal B-cell response, an antibody-forming B-cell hybridoma (1H6) expressing a conserved germ line VH gene with specificity for dextran was generated and used as a tumor model. Using algorithms for predicting major histocompatibility complex (MHC) binding, potential MHC class I and II binding peptides were identified within the 1H6 VH region, synthesized, and tested for MHC binding and immunogenicity. We show that germ line VH peptides, when presented by dendritic cells, are immunogenic in vitro and provoke a tumor-specific protective immune response in vivo. We conclude that (1) it is possible to induce a T-cell response to germ line VH peptides; (2) such peptides can be used to generate a B-cell tumor-specific vaccine; and (3) a vaccine targeting VH peptides expressed by the dominant dextran-specific B-cell clonotype had no effect upon the magnitude of the normal B-cell response to dextran.


Assuntos
Linfócitos B/imunologia , Cadeias Pesadas de Imunoglobulinas/genética , Região Variável de Imunoglobulina/genética , Algoritmos , Sequência de Aminoácidos , Animais , Formação de Anticorpos , Sequência de Bases , Vacinas Anticâncer/imunologia , Linhagem Celular , Primers do DNA , Células Dendríticas/imunologia , Epitopos/química , Epitopos/imunologia , Mutação em Linhagem Germinativa/genética , Mutação em Linhagem Germinativa/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Interferon gama/sangue , Complexo Principal de Histocompatibilidade , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA