Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(41): 29910-29918, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39301235

RESUMO

During attempts to synthesize zirconium-based MOFs, we have obtained a new crystal structure of the cluster with Zr6O8 core and formula unit [Zr6O4(OH)4(OH2)8(CH3COO)4(SO4)4]·nH2O. Unlike other systems, mild conditions were employed in this case; no strong acids or hydrothermal conditions were required. The molecular assembly in the crystal is characterized by strong O-H⋯O hydrogen bonds connecting neighboring molecules, allowing the formation of a three-dimensional maze of tunnels with H2O molecules stabilizing the framework. Noteworthy, at 100 °C, the strong Zr6O8 core and the O-H⋯O hydrogen bonds help form a system where the molecular cluster is conserved, but the long-range order is lost. FT-IR, Raman, TGA, DSC, and X-ray diffraction techniques were used to characterize the title compound.

2.
Int J Mol Sci ; 25(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38928242

RESUMO

Drug resistance in infectious diseases developed by bacteria and fungi is an important issue since it is necessary to further develop novel compounds with biological activity that counteract this problem. In addition, new pharmaceutical compounds with lower secondary effects to treat cancer are needed. Coordination compounds appear to be accessible and promising alternatives aiming to overcome these problems. In this review, we summarize the recent literature on coordination compounds based on nitrobenzoic acid (NBA) as a ligand, its derivatives, and other nitro-containing ligands, which are widely employed owing to their versatility. Additionally, an analysis of crystallographic data is presented, unraveling the coordination preferences and the most effective crystallization methods to grow crystals of good quality. This underscores the significance of elucidating crystalline structures and utilizing computational calculations to deepen the comprehension of the electronic properties of coordination complexes.


Assuntos
Complexos de Coordenação , Ligantes , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Nitrobenzoatos/química , Nitrobenzoatos/farmacologia , Humanos , Cristalografia por Raios X/métodos , Nitrocompostos/química , Nitrocompostos/farmacologia
3.
Molecules ; 28(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37446931

RESUMO

Nanoporous carbons were prepared via chemical and physical activation from mangosteen-peel-derived chars. The removal of atrazine was studied due to the bifunctionality of the N groups. Pseudo-first-order, pseudo-second-order, and intraparticle pore diffusion kinetic models were analyzed. Adsorption isotherms were also analyzed according to the Langmuir and Freundlich models. The obtained results were compared against two commercially activated carbons with comparable surface chemistry and porosimetry. The highest uptake was found for carbons with higher content of basic surface groups. The role of the oxygen-containing groups in the removal of atrazine was estimated experimentally using the surface density. The results were compared with the adsorption energy of atrazine theoretically estimated on pristine and functionalized graphene with different oxygen groups using periodic DFT methods. The energy of adsorption followed the same trend observed experimentally, namely the more basic the pH, the more favored the adsorption of atrazine. Micropores played an important role in the uptake of atrazine at low concentrations, but the presence of mesoporous was also required to inhibit the pore mass diffusion limitations. The present work contributes to the understanding of the interactions between triazine-based pollutants and the surface functional groups on nanoporous carbons in the liquid-solid interface.


Assuntos
Atrazina , Garcinia mangostana , Nanoporos , Atrazina/química , Adsorção , Carvão Vegetal/química , Cinética , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA