Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biosci Rep ; 40(12)2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33325526

RESUMO

Aldehyde dehydrogenases (ALDHs) catalyze the conversion of various aliphatic and aromatic aldehydes into corresponding carboxylic acids. Traditionally considered as housekeeping enzymes, new biochemical roles are being identified for members of ALDH family. Recent work showed that AldA from the plant pathogen Pseudomonas syringae strain PtoDC3000 (PtoDC3000) functions as an indole-3-acetaldehyde dehydrogenase for the synthesis of indole-3-acetic acid (IAA). IAA produced by AldA allows the pathogen to suppress salicylic acid-mediated defenses in the model plant Arabidopsis thaliana. Here we present a biochemical and structural analysis of the AldA indole-3-acetaldehyde dehydrogenase from PtoDC3000. Site-directed mutants targeting the catalytic residues Cys302 and Glu267 resulted in a loss of enzymatic activity. The X-ray crystal structure of the catalytically inactive AldA C302A mutant in complex with IAA and NAD+ showed the cofactor adopting a conformation that differs from the previously reported structure of AldA. These structures suggest that NAD+ undergoes a conformational change during the AldA reaction mechanism similar to that reported for human ALDH. Site-directed mutagenesis of the IAA binding site indicates that changes in the active site surface reduces AldA activity; however, substitution of Phe169 with a tryptophan altered the substrate selectivity of the mutant to prefer octanal. The present study highlights the inherent biochemical versatility of members of the ALDH enzyme superfamily in P. syringae.


Assuntos
Aldeído Oxirredutases/metabolismo , Proteínas de Bactérias/metabolismo , Indóis/metabolismo , Pseudomonas syringae/enzimologia , Aldeído Oxirredutases/química , Aldeído Oxirredutases/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Conformação Proteica , Pseudomonas syringae/genética , Relação Estrutura-Atividade , Especificidade por Substrato
2.
Oncotarget ; 8(46): 80651-80665, 2017 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-29113333

RESUMO

Excessive skin scars due to elective operations or trauma represent a challenging clinical problem. Pathophysiology of hypertrophic scars entails a prolonged inflammatory and proliferative phase of wound healing. Over expression of TGF-ß1 and COX-2 play key regulatory roles of the aberrant fibrogenic responses and proinflammatory mediators. When we silenced TGF-ß1 and COX-2 expression simultaneously in primary human fibroblasts, a marked increase in the apoptotic cell population occurred in contrast to those only treated with either TGF-ß1 or COX-2 siRNA alone. Furthermore, using human hypertrophic scar and skin graft implant models in mice, we observed significant size reductions of the implanted tissues following intra-scar administration of TGF-ß1/COX-2 specific siRNA combination packaged with Histidine Lysine Polymer (HKP). Gene expression analyses of those treated tissues revealed silencing of the target gene along with down regulations of pro-fibrotic factors such as α-SMA, hydroxyproline acid, Collagen 1 and Collagen 3. Using TUNEL assay detection, we found that the human fibroblasts in the implanted tissues treated with the TGF-ß1/COX-2siRNAs combination exhibited significant apoptotic activity. Therefore we conclude that a synergistic effect of the TGF-ß1/COX-2siRNAs combination contributed to the size reductions of the hypertrophic scar implants, through activation of fibroblast apoptosis and re-balancing between scar tissue deposition and degradation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA