RESUMO
ABSTRACTEnvironmental contamination by 4-chlorophenol (4-CP) is a major concern. Photosynthetic bacteria have the ability to biodegrade 4-CP under dark aerobic conditions. In this study, we found that using different carbon sources (i.e. glucose, sodium acetate, sodium propionate sucrose, and malic acid) as co-metabolic substrates accelerated the biodegradation of 4-CP, and this acceleration was especially pronounced in the glucose treatment. A maximum degradation rate of 96.99% was reached under a concentration of 3.0â g·L-1 after 6 days of culture. The optimum conditions were pH 7.5, a temperature of 30°C, and a rotation speed of 135â rpm. The biodegradation of 4-CP was achieved at a range of salinities (0-3.0% NaCl, w/v). The biodegradation kinetics agreed with the Haldane model, and the kinetic constants were rmax = 0.14 d-1, Km = 33.9â mg·L-1, and Ki = 159.6â mg·L-1. Additionally, the coexistence of phenol or 2,4-dichlorophenol (2, 4-DCP) had a certain impact on the degradation of 4-CP under dark aerobic conditions. When the coexisting phenol concentration reached 100â mg·L-1, the maximum degradation rate of 4-CP reached 90.20%. The degradation rate of 4-CP decreased as the concentration of coexisting 2, 4-DCP increased.