Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Viruses ; 16(4)2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38675964

RESUMO

Rotavirus (RV) is the main pathogen that causes severe diarrhea in infants and children under 5 years of age. No specific antiviral therapies or licensed anti-rotavirus drugs are available. It is crucial to develop effective and low-toxicity anti-rotavirus small-molecule drugs that act on novel host targets. In this study, a new anti-rotavirus compound was selected by ELISA, and cell activity was detected from 453 small-molecule compounds. The anti-RV effects and underlying mechanisms of the screened compounds were explored. In vitro experimental results showed that the small-molecule compound ML241 has a good effect on inhibiting rotavirus proliferation and has low cytotoxicity during the virus adsorption, cell entry, and replication stages. In addition to its in vitro effects, ML241 also exerted anti-RV effects in a suckling mouse model. Transcriptome sequencing was performed after adding ML241 to cells infected with RV. The results showed that ML241 inhibited the phosphorylation of ERK1/2 in the MAPK signaling pathway, thereby inhibiting IκBα, activating the NF-κB signaling pathway, and playing an anti-RV role. These results provide an experimental basis for specific anti-RV small-molecule compounds or compound combinations, which is beneficial for the development of anti-RV drugs.


Assuntos
Antivirais , Infecções por Rotavirus , Rotavirus , Replicação Viral , Rotavirus/efeitos dos fármacos , Rotavirus/fisiologia , Animais , Camundongos , Infecções por Rotavirus/tratamento farmacológico , Infecções por Rotavirus/virologia , Replicação Viral/efeitos dos fármacos , Humanos , Antivirais/farmacologia , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , NF-kappa B/metabolismo , Fosforilação , Camundongos Endogâmicos BALB C , Linhagem Celular , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
2.
Viruses ; 16(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38399987

RESUMO

Rotaviruses (RVs) are a major cause of diarrhea in young children worldwide. The currently available and licensed vaccines contain live attenuated RVs. Optimization of live attenuated RV vaccines or developing non-replicating RV (e.g., mRNA) vaccines is crucial for reducing the morbidity and mortality from RV infections. Herein, a nucleoside-modified mRNA vaccine encapsulated in lipid nanoparticles (LNP) and encoding the VP7 protein from the G1 type of RV was developed. The 5' untranslated region of an isolated human RV was utilized for the mRNA vaccine. After undergoing quality inspection, the VP7-mRNA vaccine was injected by subcutaneous or intramuscular routes into mice. Mice received three injections in 21 d intervals. IgG antibodies, neutralizing antibodies, cellular immunity, and gene expression from peripheral blood mononuclear cells were evaluated. Significant differences in levels of IgG antibodies were not observed in groups with adjuvant but were observed in groups without adjuvant. The vaccine without adjuvant induced the highest antibody titers after intramuscular injection. The vaccine elicited a potent antiviral immune response characterized by antiviral clusters of differentiation CD8+ T cells. VP7-mRNA induced interferon-γ secretion to mediate cellular immune responses. Chemokine-mediated signaling pathways and immune response were activated by VP7-mRNA vaccine injection. The mRNA LNP vaccine will require testing for protective efficacy, and it is an option for preventing rotavirus infection.


Assuntos
Infecções por Rotavirus , Vacinas contra Rotavirus , Rotavirus , Criança , Animais , Camundongos , Humanos , Pré-Escolar , Rotavirus/genética , Vacinas contra Rotavirus/genética , Vacinas de mRNA , RNA Mensageiro/genética , Linfócitos T CD8-Positivos , Leucócitos Mononucleares , Anticorpos Antivirais , Proteínas do Capsídeo/genética , Adjuvantes Imunológicos , Vacinas Atenuadas , Imunoglobulina G
3.
Angew Chem Int Ed Engl ; 63(10): e202318621, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38242850

RESUMO

Perovskite solar cell (pero-SC) has attracted extensive studies as a promising photovoltaic technology, wherein the electron extraction and transfer exhibit pivotal effect to the device performance. The planar SnO2 electron transport layer (ETL) has contributed the recent record power conversion efficiency (PCE) of the pero-SCs, yet still suffers from surface defects of SnO2 nanoparticles which brings energy loss and phase instability. Herein, we report a localized oxidation embellishing (LOE) strategy by applying (NH4 )2 CrO4 on the SnO2 ETL. The LOE strategy builds up plentiful nano-heterojunctions of p-Cr2 O3 /n-SnO2 and the nano-heterojunctions compensate the surface defects and realize benign energy alignment, which reduces surface non-radiative recombination and voltage loss of the pero-SCs. Meanwhile, the decrease of lattice mismatch released the lattice distortion and eliminated tensile stress, contributing to better stability of the devices. The pero-SCs based on α-FAPbI3 with the SnO2 ETL treated by the LOE strategy realized a PCE of 25.72 % (certified as 25.41 %), along with eminent stability performance of T90 >700 h. This work provides a brand-new view for defect modification of SnO2 electron transport layer.

4.
Hum Vaccin Immunother ; 19(1): 2189598, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36994772

RESUMO

Rotavirus is one of the main pathogens causing severe diarrhea in infants and young children < 5 years of age. The development of the next-generation rotavirus vaccine is of great significance for preventing rotavirus infection and reducing severe mortality. The current study aimed to develop and evaluate the immunogenicity of inactivated rotavirus vaccine (IRV) in rhesus monkeys. Monkeys received two or three IRV injections intramuscularly at a 4-week interval. Neutralizing antibodies, cellular immunity, PBMC gene expression profiling, and immune persistence were evaluated. Three-dose immunization of IRV induced a higher level of neutralizing, IgG and IgA antibodies compared to two-dose immunization. IRV induced IFN-γ secretion to mediate cellular immune responses, including robust pro-inflammatory and antiviral responses. Chemokine-mediated signaling pathways and immune response were broadly activated by IRV injection. The IRV-induced neutralizing antibodies resulting from two doses returned to baseline levels 20 weeks after full immunization, while those resulting from three doses returned to baseline levels 44 weeks after full immunization. Increasing immunization dose and injection number will help to improve IRV immunogenicity and neutralizing antibody persistence.


Assuntos
Infecções por Rotavirus , Vacinas contra Rotavirus , Rotavirus , Animais , Macaca mulatta , Anticorpos Antivirais , Leucócitos Mononucleares , Infecções por Rotavirus/prevenção & controle , Anticorpos Neutralizantes , Vacinas de Produtos Inativados
5.
Vaccine ; 40(28): 3843-3850, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35644669

RESUMO

Rotavirus (RV) is a major pathogen causing severe diarrhea in infants and children aged less than 5 years. Vaccination is an economically feasible and effective strategy to prevent rotavirus infections. However, immune efficacy of live vaccines could be interfered by maternal antibodies and pre-existing antibodies of children. To develop an inactivated rotavirus vaccine (IRV), we had previously isolated a wild-type human rotavirus strain ZTR-68-A (G1P[8]) from the fecal samples of infants having severe diarrhea in a region endemic for the presence of this pathogen. In our present study, we assessed whether the presence of maternal and pre-existing antibodies in newborn BALB/c mice affected the immunogenicity of IRV administered to these animals. Our results indicate that maternal antibodies, generated from either vaccine immunization or rotavirus infection, showed partial influence with the immune responses generated by two doses of IRV vaccination. Increasing the number of immunizations can significantly improve the titer of serum neutralizing antibody and a seroconversion rate of up to 100%. In newborn mice, single-virus infection did not elicit detectable levels of serum neutralizing antibodies. After an IRV vaccination, the immune responses of these mice remained unaffected, with no significant differences in titers compared with those of control-group mice. In summary, choosing a suitable immunization dose and dosing frequency is essential for the immune effectiveness of IRV. The results of this study will provide animal experimental support for the IRV clinical research in future.


Assuntos
Infecções por Rotavirus , Vacinas contra Rotavirus , Rotavirus , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Diarreia , Humanos , Imunoglobulina A , Lactente , Camundongos , Vacinas de Produtos Inativados
6.
Adv Mater ; 34(11): e2108829, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35048434

RESUMO

Combining the high stability under UV light of the wide bandgap (WBG) perovskite solar cells (pero-SCs) and the broad near-infrared absorption spectra of the narrow bandgap (NBG) organic solar cells (OSCs), the perovskite/organic tandem solar cells (TSCs) with the WBG pero-SC as front cell and the NBG OSC as rear cell have attracted attention . However, the photovoltaic performance of the perovskite/organic TSCs needs to be further improved. Herein, nonradiative charge recombination loss is reduced through bulk defect passivation in the WBG pero-SC front subcell and broadening the range of absorption spectra of the NBG OSC rear cell. For the WBG pero-SCs, an organic cation chloro-formamidinium is introduced into FA0.6 MA0.4 Pb(I0.6 Br0.4 )3 to passivate the bulk defects in the perovskite film and the WBG pero-SC displays high open-circuit voltage of 1.25 V and high fill factor of 83.0%. For the NBG OSCs, a new infrared-absorbing organic small molecule acceptor BTPV-4Cl-eC9 is designed and synthesized. Then, a monolithic perovskite/organic TSC is fabricated with the WBG pero-SC as the front cell and the NBG OSC as the rear cell, and the TSC demonstrates high power conversion efficiency up to 22.0%. The results indicate that the perovskite/organic TSC is promising for future commercialization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA