Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(11): 5613-5623, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38412042

RESUMO

Modern silicone-based epidermal electronics engineered for body temperature sensing represent a pivotal development in the quest for advancing preventive medicine and enhancing post-surgical monitoring. While these compact and highly flexible electronics empower real-time monitoring in dynamic environments, a noteworthy limitation is the challenge in regulating the infiltration or obstruction of heat from the external environment into the surface layers of these electronics. The study presents a cost-effective temperature sensing solution by embedding wireless electronics in a multi-layered elastomeric composite to meet the dual needs of enhanced thermal insulation for encapsulation in contact with air and improved thermal conductivity for the substrate in contact with the skin. The encapsulating composite benefits from the inclusion of hollow silica microspheres, which reduce the thermal conductivity by 40%, while non-spherical aluminum nitride enhances the thermal conductivity of the substrate by 370%. The addition of particles to the respective composites inevitably leads to an increase in modulus. Two composite elements are engineered to coexist while maintaining a matching low modulus of 3.4 MPa and a stretchability exceeding 30%, all without compromising the optimized thermal properties. Consecutive thermal, electrical, and mechanical characterization confirms the sensor's capacity for precise body temperature monitoring during a single day's lifespan, while also assessing the influence of behavioral factors on body temperature.

2.
Front Plant Sci ; 15: 1335120, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410733

RESUMO

Hexokinase (HXK) plays a crucial role in plants, catalyzing the phosphorylation of hexose substances, which is one of the key steps in sugar metabolism and energy production. While HXK genes have been well-studied in model plants, the evolutionary and functional characteristics of HXK gene family in jujube is unknow. In this study, the HXK gene family members were identified by bioinformatics methods, the key members regulating glucose metabolism were identified by transcriptome data, and finally the function of the key genes was verified by instantaneous and stable genetic transformation. Our results showed that seven HXK genes were identified in the jujube genome, all of which were predict located in the chloroplast and contain Hexokinase-1 (PF00349) and Hexokinase-2 (PF03727) conserved domains. Most of HXK proteins were transmembrane protein with stable, lipid-soluble, hydrophilic. The secondary structure of ZjHXK proteins main α-helix, and contains two distinct tertiary structure. All ZjHXK genes contain nine exons and eight introns. Predictions of cis-regulatory elements indicate that the promoter region of ZjHXK contains a large number of MeJA responsive elements. Finally, combined with the analysis of the relationship between the expression and glucose metabolism, found that ZjHXK5 and ZjHXK6 may the key genes regulating sugar metabolism. Transient overexpression of ZjHXK5 and ZjHXK6 on jujube, or allogeneic overexpression of ZjHXK5 and ZjHXK6 on tomato would significantly reduce the content of total sugar and various sugar components. Transient silencing of ZjHXK5 and ZjHXK6 genes results in a significant increase in sucrose and total sugar content. Interestingly, the expression of ZjHXK5 and ZjHXK6 were also affected by methyl jasmonate.

3.
Int J Pharm ; 642: 123119, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37302666

RESUMO

Nanometal-organic frameworks (NMOFs) are porous network structures composed of metal ions or metal clusters through self-assembly. NMOFs have been considered as a promising nano-drug delivery system due to their unique properties such as pore and flexible structures, large specific surface areas, surface modifiability, non-toxic and degradable properties. However, NMOFs face a series complex environment during in vivo delivery. Therefore, surface functionalization of NMOFs is vital to ensure that the structure of NMOFs remain stable during delivery, and can overcome physiological barriers to deliver drugs more accurately to specific sites, and achieve controllable release. In this review, the first part summarizes the physiological barriers that NMOFs faced during drug delivery after intravenous injection and oral administration. The second part summarizes the current main ways to load drugs into NMOFs, mainly including pore adsorption, surface attachment, formation of covalent/coordination bonds between drug molecules and NMOFs, and in situ encapsulation. The third part is the main review part of this paper, which summarizes the surface modification methods of NMOFs used in recent years to overcome the physiological barriers and achieve effective drug delivery and disease therapy, which are mainly divided into physical modifications and chemical modifications. Finally, the full text is summarized and prospected, with the hope to provide ideas for the future development of NMOFs as drug delivery.


Assuntos
Sistemas de Liberação de Medicamentos , Metais , Metais/química
4.
Sci Rep ; 12(1): 2272, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35145206

RESUMO

Jujube is a crop highly resistant to drought and salinity, making it one of the main fruit trees in Xinjiang. The present study evaluated the changes in the physicochemical and antioxidant activities of jujube fruit of eight different cultivars from Xinjiang, China. The developmental stages were selected according to the days after full bloom and fruit peel colour during ripening; these stages included young (S1), fruit core-hardening (S2), green ripening (S3), half-red maturity (S4) and complete red. In present study, different cultivars of jujube fruit showed similar chemical profiles, but their amounts showed great variation. HZ had the highest content of sugars, and JY had the highest content of cAMP and cGMP, while relatively higher levels of ascorbic acid, catechin, epicatechin, rutin, proanthocyanidin and antioxidant activity were found in 'FS' than in other cultivars, indicating that 'FS' could be used as a potential natural antioxidant. Regarding the development stages of jujube fruit, the moisture, ascorbic acid, total polyphenol, catechin, epicatechin, proanthocyanidin and rutin contents decreased during the development of all jujube cultivars, while the fructose, glucose, sucrose, cAMP, and cGMP contents greatly increased. The antioxidant activity determined by DPPH and ABTS radical scavenging decreased as the fruits matured. Therefore, the results suggest that green jujube (S1) could be used for natural antioxidants (catechin, epicatechin, proanthocyanidin) and that the advanced ripening stage(S5) is the proper picking period for fresh fruit and commercial processing.


Assuntos
Antioxidantes/metabolismo , Frutas/fisiologia , Fenóis/metabolismo , Ziziphus/fisiologia , Ácido Ascórbico/metabolismo , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Especificidade da Espécie , Açúcares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA