Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Rev ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990563

RESUMO

Heterogeneous electrocatalysis lies at the center of various technologies that could help enable a sustainable future. However, its complexity makes it challenging to accurately and efficiently model at an atomic level. Here, we review emerging atomistic methods to simulate the electrocatalytic interface with special attention devoted to the components/effects that have been challenging to model, such as solvation, electrolyte ions, electrode potential, reaction kinetics, and pH. Additionally, we review relevant computational spectroscopy methods. Then, we showcase several examples of applying these methods to understand and design catalysts relevant to green hydrogen. We also offer experimental views on how to bridge the gap between theory and experiments. Finally, we provide some perspectives on opportunities to advance the field.

2.
J Phys Chem A ; 128(10): 1948-1957, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38416723

RESUMO

Accurate classification of molecular chemical motifs from experimental measurement is an important problem in molecular physics, chemistry, and biology. In this work, we present neural network ensemble classifiers for predicting the presence (or lack thereof) of 41 different chemical motifs on small molecules from simulated C, N, and O K-edge X-ray absorption near-edge structure (XANES) spectra. Our classifiers not only achieve class-balanced accuracies of more than 0.95 but also accurately quantify uncertainty. We also show that including multiple XANES modalities improves predictions notably on average, demonstrating a "multimodal advantage" over any single modality. In addition to structure refinement, our approach can be generalized to broad applications with molecular design pipelines.

4.
Sci Data ; 10(1): 349, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37268638

RESUMO

X-ray absorption spectroscopy (XAS) is a premier technique for materials characterization, providing key information about the local chemical environment of the absorber atom. In this work, we develop a database of sulfur K-edge XAS spectra of crystalline and amorphous lithium thiophosphate materials based on the atomic structures reported in Chem. Mater., 34, 6702 (2022). The XAS database is based on simulations using the excited electron and core-hole pseudopotential approach implemented in the Vienna Ab initio Simulation Package. Our database contains 2681 S K-edge XAS spectra for 66 crystalline and glassy structure models, making it the largest collection of first-principles computational XAS spectra for glass/ceramic lithium thiophosphates to date. This database can be used to correlate S spectral features with distinct S species based on their local coordination and short-range ordering in sulfide-based solid electrolytes. The data is openly distributed via the Materials Cloud, allowing researchers to access it for free and use it for further analysis, such as spectral fingerprinting, matching with experiments, and developing machine learning models.

5.
Nanotechnology ; 34(12)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36538812

RESUMO

Discovery of structure-property relationships in thin film alloys of complex metal oxides enabled by high-throughput materials synthesis and characterization facilities is demonstrated here with a case-study. Thin films of binary transition metal oxides (Ti-Zn) are prepared by pulsed laser deposition with continuously varying Ti:Zn ratio, creating combinatorial samples for exploration of the properties of this material family. The atomic structure and electronic properties are probed by spatially resolved techniques including x-ray absorption near edge structures (XANES) and x-ray fluorescence (XRF) at the Ti and Zn K-edge, x-ray diffraction, and spectroscopic ellipsometry. The observed properties as a function of Ti:Zn ratio are resolved into mixtures of five distinguishable phases by deploying multivariate curve resolution analysis on the XANES spectral series, under constraints set by results from the other characterization techniques. First-principles computations based on density function theory connect the observed properties of each distinct phase with structural and spectral characteristics of crystalline polymorphs of Ti-Zn oxide. Continuous tuning of the optical absorption edge as a function of Ti:Zn ratio, including the unusual observation of negative optical bowing, exemplifies a functional property of the film correlated to the phase evolution.

6.
Nanomaterials (Basel) ; 12(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35055203

RESUMO

Confined nanosized spaces at the interface between a metal and a seemingly inert material, such as a silicate, have recently been shown to influence the chemistry at the metal surface. In prior work, we observed that a bilayer (BL) silica on Ru(0001) can change the reaction pathway of the water formation reaction (WFR) near room temperature when compared to the bare metal. In this work, we looked at the effect of doping the silicate with Al, resulting in a stoichiometry of Al0.25Si0.75O2. We investigated the kinetics of WFR at elevated H2 pressures and various temperatures under interfacial confinement using ambient pressure X-ray photoelectron spectroscopy. The apparent activation energy was lower than that on bare Ru(0001) but higher than that on the BL-silica/Ru(0001). The apparent reaction order with respect to H2 was also determined. The increased residence time of water at the surface, resulting from the presence of the BL-aluminosilicate (and its subsequent electrostatic stabilization), favors the so-called disproportionation reaction pathway (*H2O + *O ↔ 2 *OH), but with a higher energy barrier than for pure BL-silica.

7.
Nanotechnology ; 33(13)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34911055

RESUMO

The growth of the silica (SiO2) bilayer (BL) films on transition metal (TM) surfaces creates a new class of two-dimensional (2D) crystalline, self-contained materials that interact weakly with the TM substrate. The BL-silica/TM heterojunction has shown unique physical and chemical properties that can lead to new chemical reaction mechanisms under the sub-nm confinement and broad potential applications ranging from surface protection, nano transistors, molecular sieves to nuclear waste removal. Novel applications of BL-silica can be further explored as a constituent of van der Waals assembly of 2D materials. Key to these applications is an unmet technical challenge to exfoliate and transfer BL-silica films in a large area from one substrate to another without material damage. In this study, we propose a new exfoliation mechanism based on gas molecule intercalation from density functional theory studies of the BL-silica/TM heterojunction. We found that the intercalation of O atoms and CO molecules at the BL-silica/TM interface weakens the BL-silica-TM hybridization, which results in an exponential decrease of the exfoliation energy against the interface distance as the coverage of interfacial species increases. This new intercalation mechanism opens up the opportunity for non-damaging exfoliation and transfer of large area silica bilayers.

8.
Angew Chem Int Ed Engl ; 60(32): 17350-17355, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-33217148

RESUMO

High-nickel cathodes attract immense interest for use in lithium-ion batteries to boost Li-storage capacity while reducing cost. For overcoming the intergranular-cracking issue in polycrystals, single-crystals are considered an appealing alternative, but aggravating concerns on compromising the ionic transport and kinetic properties. We report here a quantitative assessment of redox reaction in single-crystal LiNi0.8 Mn0.1 Co0.1 O2 using operando hard X-ray microscopy/spectroscopy, revealing a strong dependence of redox kinetics on the state of charge (SOC). Specifically, the redox is sluggish at low SOC but increases rapidly as SOC increases, both in bulk electrodes and individual particles. The observation is corroborated by transport measurements and finite-element simulation, indicating that the sluggish kinetics in single-crystals is governed by ionic transport at low SOC and may be alleviated through synergistic interaction with polycrystals integrated into a same electrode.

9.
J Phys Chem Lett ; 11(16): 6827-6834, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32787215

RESUMO

Charge transfer between dissimilar atoms is an essential step for many chemical processes such as corrosion and heterogeneous catalysis, but directly probing the charge transfer has been a challenge. Using the oxygen-copper system as an example, we show that synchrotron-based ambient pressure X-ray photoelectron spectroscopy can be employed to monitor the charge transfer between adsorbates and metal surfaces. It is shown that oxygen chemisorption on Cu surfaces results in an Auger process that differs from the photoexcitation-induced Coster-Kroning transition and can be used to derive the degree of charge transfer in combination with ab initio calculations. The identified chemisorption-induced Auger process may have broader implications for its use as a fingerprint to monitor bond formation and charge transfer between dissimilar atoms.

10.
Phys Rev Lett ; 124(15): 156401, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32357067

RESUMO

Simulations of excited state properties, such as spectral functions, are often computationally expensive and therefore not suitable for high-throughput modeling. As a proof of principle, we demonstrate that graph-based neural networks can be used to predict the x-ray absorption near-edge structure spectra of molecules to quantitative accuracy. Specifically, the predicted spectra reproduce nearly all prominent peaks, with 90% of the predicted peak locations within 1 eV of the ground truth. Besides its own utility in spectral analysis and structure inference, our method can be combined with structure search algorithms to enable high-throughput spectrum sampling of the vast material configuration space, which opens up new pathways to material design and discovery.

11.
Science ; 367(6481): 1030-1034, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32108110

RESUMO

Fast-charging batteries typically use electrodes capable of accommodating lithium continuously by means of solid-solution transformation because they have few kinetic barriers apart from ionic diffusion. One exception is lithium titanate (Li4Ti5O12), an anode exhibiting extraordinary rate capability apparently inconsistent with its two-phase reaction and slow Li diffusion in both phases. Through real-time tracking of Li+ migration using operando electron energy-loss spectroscopy, we reveal that facile transport in Li4+ x Ti5O12 is enabled by kinetic pathways comprising distorted Li polyhedra in metastable intermediates along two-phase boundaries. Our work demonstrates that high-rate capability may be enabled by accessing the energy landscape above the ground state, which may have fundamentally different kinetic mechanisms from the ground-state macroscopic phases. This insight should present new opportunities in searching for high-rate electrode materials.

13.
Nano Lett ; 19(6): 3457-3463, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31046292

RESUMO

Due to its chemical stability, titania (TiO2) thin films increasingly have significant impact when applied as passivation layers. However, optimization of growth conditions, key to achieving essential film quality and effectiveness, is challenging in the few-nanometers thickness regime. Furthermore, the atomic-scale structure of the nominally amorphous titania coating layers, particularly when applied to nanostructured supports, is difficult to probe. In this Letter, the quality of titania layers grown on ZnO nanowires is optimized using specific strategies for processing of the nanowire cores prior to titania coating. The best approach, low-pressure O2 plasma treatment, results in significantly more-uniform titania films and a conformal coating. Characterization using X-ray absorption near edge structure (XANES) reveals the titania layer to be highly amorphous, with features in the Ti spectra significantly different from those observed for bulk TiO2 polymorphs. Analysis based on first-principles calculations suggests that the titania shell contains a substantial fraction of under-coordinated Ti4+ ions. The best match to the experimental XANES spectrum is achieved with a "glassy" TiO2 model that contains ∼50% of under-coordinated Ti4+ ions, in contrast to bulk crystalline TiO2 that only contains 6-coordinated Ti4+ ions in octahedral sites.

14.
Chem Sci ; 10(3): 930-935, 2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30774887

RESUMO

N-heterocyclic carbenes (NHCs) bind very strongly to transition metals due to their unique electronic structure featuring a divalent carbon atom with a lone pair in a highly directional sp2-hybridized orbital. As such, they can be assembled into monolayers on metal surfaces that have enhanced stability compared to their thiol-based counterparts. The utility of NHCs to form such robust self-assembled monolayers (SAMs) was only recently recognized and many fundamental questions remain. Here we investigate the structure and geometry of a series of NHCs on Au(111) using high-resolution X-ray photoelectron spectroscopy and density functional theory calculations. We find that the N-substituents on the NHC ring strongly affect the molecule-metal interaction and steer the orientation of molecules in the surface layer. In contrast to previous reports, our experimental and theoretical results provide unequivocal evidence that NHCs with N-methyl substituents bind to undercoordinated adatoms to form flat-lying complexes. In these SAMs, the donor-acceptor interaction between the NHC lone pair and the undercoordinated Au adatom is primarily responsible for the strong bonding of the molecules to the surface. NHCs with bulkier N-substituents prevent the formation of such complexes by forcing the molecules into an upright orientation. Our work provides unique insights into the bonding and geometry of NHC monolayers; more generally, it charts a clear path to manipulating the interaction between NHCs and metal surfaces using traditional coordination chemistry synthetic strategies.

15.
Phys Rev B ; 972018.
Artigo em Inglês | MEDLINE | ID: mdl-31080938

RESUMO

The valence-to-core (V2C) portion of x-ray emission spectroscopy (XES) measures the electron states close to the Fermi level. These states are involved in bonding, thus providing a measure of the chemistry of the material. In this article, we show the V2C XES spectra for several niobium compounds. The Kß″ peak in the V2C XES results from the transition of a ligand 2s electron into the 1s core-hole of the niobium, a transition allowed by hybridization with the niobium 4p. This location in energy of this weak peak shows a strong ligand dependence, thus providing a sensitive probe of the ligand environment about the niobium.

16.
Artigo em Inglês | MEDLINE | ID: mdl-31093600

RESUMO

Doped metal oxide materials are commonly used for applications in energy storage and conversion, such as batteries and solid oxide fuel cells. The knowledge of the electronic properties of dopants and their local environment is essential for understanding the effects of doping on the electrochemical properties. Using a combination of X-ray absorption near-edge structure spectroscopy (XANES) experiment and theoretical modeling we demonstrate that in the dilute (1 at. %) Mn-doped lithium titanate (Li4/3Ti5/3O4, or LTO) the dopant Mn2+ ions reside on tetrahedral (8a) sites. First-principles Mn K-edge XANES calculations revealed the spectral signature of the tetrahedrally coordinated Mn as a sharp peak in the middle of the absorption edge rise, caused by the 1s → 4p transition, and it is important to include the effective electron-core hole Coulomb interaction in order to calculate the intenisty of this peak accurately. This dopant location explains the impedance of Li migration through the LTO lattice during the charge-discharge process, and, as a result - the observed remarkable 20% decrease in electrochemical rate performance of the 1% Mn-doped LTO compared to the pristine LTO.

17.
J Am Chem Soc ; 139(46): 16591-16603, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29027465

RESUMO

Zero-strain electrodes, such as spinel lithium titanate (Li4/3Ti5/3O4), are appealing for application in batteries due to their negligible volume change and extraordinary stability upon repeated charge/discharge cycles. On the other hand, this same property makes it challenging to probe their structural changes during the electrochemical reaction. Herein, we report in situ studies of lithiation-driven structural transformations in Li4/3Ti5/3O4 via a combination of X-ray absorption spectroscopy and ab initio calculations. Based on excellent agreement between computational and experimental spectra of Ti K-edge, we identified key spectral features as fingerprints for quantitative assessment of structural evolution at different length scales. Results from this study indicate that, despite the small variation in the crystal lattice during lithiation, pronounced structural transformations occur in Li4/3Ti5/3O4, both locally and globally, giving rise to a multi-stage kinetic process involving mixed quasi-solid solution/macroscopic two-phase transformations over a wide range of Li concentrations. This work highlights the unique capability of combining in situ core-level spectroscopy and first-principles calculations for probing Li-ion intercalation in zero-strain electrodes, which is crucial to designing high-performance electrode materials for long-life batteries.

18.
Proc Natl Acad Sci U S A ; 114(37): 9832-9837, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28855335

RESUMO

The optimal functionalities of materials often appear at phase transitions involving simultaneous changes in the electronic structure and the symmetry of the underlying lattice. It is experimentally challenging to disentangle which of the two effects--electronic or structural--is the driving force for the phase transition and to use the mechanism to control material properties. Here we report the concurrent pumping and probing of Cu2S nanoplates using an electron beam to directly manipulate the transition between two phases with distinctly different crystal symmetries and charge-carrier concentrations, and show that the transition is the result of charge generation for one phase and charge depletion for the other. We demonstrate that this manipulation is fully reversible and nonthermal in nature. Our observations reveal a phase-transition pathway in materials, where electron-induced changes in the electronic structure can lead to a macroscopic reconstruction of the crystal structure.

19.
J Phys Chem Lett ; 8(20): 5091-5098, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-28960990

RESUMO

Tracking the structure of heterogeneous catalysts under operando conditions remains a challenge due to the paucity of experimental techniques that can provide atomic-level information for catalytic metal species. Here we report on the use of X-ray absorption near-edge structure (XANES) spectroscopy and supervised machine learning (SML) for refining the 3D geometry of metal catalysts. SML is used to unravel the hidden relationship between the XANES features and catalyst geometry. To train our SML method, we rely on ab initio XANES simulations. Our approach allows one to solve the structure of a metal catalyst from its experimental XANES, as demonstrated here by reconstructing the average size, shape, and morphology of well-defined platinum nanoparticles. This method is applicable to the determination of the nanoparticle structure in operando studies and can be generalized to other nanoscale systems. It also allows on-the-fly XANES analysis and is a promising approach for high-throughput and time-dependent studies.

20.
Nat Commun ; 8: 16118, 2017 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-28714478

RESUMO

The confinement of noble gases on nanostructured surfaces, in contrast to bulk materials, at non-cryogenic temperatures represents a formidable challenge. In this work, individual Ar atoms are trapped at 300 K in nano-cages consisting of (alumino)silicate hexagonal prisms forming a two-dimensional array on a planar surface. The trapping of Ar atoms is detected in situ using synchrotron-based ambient pressure X-ray photoelectron spectroscopy. The atoms remain in the cages upon heating to 400 K. The trapping and release of Ar is studied combining surface science methods and density functional theory calculations. While the frameworks stay intact with the inclusion of Ar atoms, the permeability of gasses (for example, CO) through them is significantly affected, making these structures also interesting candidates for tunable atomic and molecular sieves. These findings enable the study of individually confined noble gas atoms using surface science methods, opening up new opportunities for fundamental research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA