Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
In Vitro Cell Dev Biol Anim ; 60(9): 1009-1020, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39093368

RESUMO

The promotion of gut health, a pervasive problem in modern animal husbandry, positively affects organismal health, productivity, and economics. Porcine intestinal epithelial cells (IPEC-J2) continuously proliferate to maintain intestinal homeostasis, including barrier, immune, and absorptive functions. Gut homeostasis is fundamental to organismal health. ADP-ribosylation factor 1 (Arf1), a small GTPase, plays a crucial role in coordinating mTORC1 in response to nutrients, especially amino acid availability in the gut. mTORC1 is the central hub of proliferation. Thus, it seems likely that Arf1 promotes IPEC-J2 cell proliferation. However, the exact role of Arf1 in the porcine gut remains unclear. Therefore, we evaluated the functional role and possible mechanisms of Arf1 in the porcine intestine through Arf1 overexpression and knockdown in IPEC-J2 cells. Arf1 overexpression and knockdown significantly enhanced and inhibited, respectively, IPEC-J2 cell viability, and PCNA expression varied with Arf1 expression. Moreover, the proportion of Ki67-positive cells was significantly greater in the Arf1-overexpressing group than in the control group. These results suggest that Arf1 improves IPEC-J2 cell proliferation. The underlying mechanism was explored by Western blotting. Arf1 overexpression and knockdown significantly enhanced and suppressed, respectively, the levels of p-S6K1 and p-RPS6, which are key downstream targets of the mTORC1 signaling pathway. Collectively, our findings reveal the role of the Arf1-mTORC1 axis in IPEC-J2 cell proliferation and its potential function in regulating intestinal homeostasis and health.


Assuntos
Fator 1 de Ribosilação do ADP , Proliferação de Células , Células Epiteliais , Mucosa Intestinal , Alvo Mecanístico do Complexo 1 de Rapamicina , Transdução de Sinais , Animais , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Suínos , Fator 1 de Ribosilação do ADP/metabolismo , Fator 1 de Ribosilação do ADP/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/citologia , Células Epiteliais/metabolismo , Células Epiteliais/citologia , Linhagem Celular , Sobrevivência Celular , Antígeno Nuclear de Célula em Proliferação/metabolismo
2.
J Agric Food Chem ; 72(13): 7155-7166, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38526961

RESUMO

Glutamine (Gln) is a critical nutrient required by neonatal mammals for intestinal growth, especially for newborn piglets. However, the mechanisms underlying the role of Gln in porcine intestinal epithelium development are not fully understood. The objective of the current study was to explore the possible signaling pathway involved in the promotion of porcine intestinal epithelial cell (IPEC-J2) proliferation by Gln. The results showed that 1 mM Gln promoted IPEC-J2 cell proliferation, and tandem mass tag proteomics revealed 973 differentially expressed proteins in Gln-treated IPEC-J2 cells, 824 of which were upregulated and 149 of which were downregulated. Moreover, gene set enrichment analysis indicated that the Wnt signaling pathway is activated by Gln treatment. Western blotting analysis further confirmed that Gln activated the Wnt/ß-catenin signaling pathway. In addition, Gln increased not only cytosolic ß-catenin but also nuclear ß-catenin protein expression. LF3 (a ß-catenin/TCF4 interaction inhibitor) assay and ß-catenin knockdown demonstrated that Gln-mediated promotion of Wnt/ß-catenin signaling and cell proliferation were blocked. Furthermore, the inhibition of TCF4 expression suppressed Gln-induced cell proliferation. These findings further confirmed that Wnt/ß-catenin signaling is involved in the promotion of IPEC-J2 cell proliferation by Gln. Collectively, these findings demonstrated that Gln positively regulated IPEC-J2 cell proliferation through the Wnt/ß-catenin pathway. These data greatly enhance the current understanding of the mechanism by which Gln regulates intestinal development.


Assuntos
Glutamina , Via de Sinalização Wnt , Animais , Suínos , Glutamina/farmacologia , Glutamina/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Intestinos , Mucosa Intestinal/metabolismo , Proliferação de Células , Mamíferos/metabolismo
3.
J Nutr ; 154(4): 1119-1129, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38365119

RESUMO

BACKGROUND: The intestinal epithelium is one of the fastest self-renewal tissues in the body, and glutamine plays a crucial role in providing carbon and nitrogen for biosynthesis. In intestinal homeostasis, phosphorylation-mediated signaling networks that cause altered cell proliferation, differentiation, and metabolic regulation have been observed. However, our understanding of how glutamine affects protein phosphorylation in the intestinal epithelium is limited, and identifying the essential signaling pathways involved in regulating intestinal epithelial cell growth is particularly challenging. OBJECTIVES: This study aimed to identify the essential proteins and signaling pathways involved in glutamine's promotion of porcine intestinal epithelial cell proliferation. METHODS: Phosphoproteomics was applied to describe the protein phosphorylation landscape under glutamine treatment. Kinase-substrate enrichment analysis was subjected to predict kinase activity and validated by qRT-PCR and Western blotting. Cell Counting Kit-8, glutamine rescue experiment, chloroquine treatment, and 5-fluoro-2-indolyl deschlorohalopemide inhibition assay revealed the possible underlying mechanism of glutamine promoting porcine intestinal epithelial cell proliferation. RESULTS: In this study, glutamine starvation was found to significantly suppress the proliferation of intestinal epithelial cells and change phosphoproteomic profiles with 575 downregulated sites and 321 upregulated sites. Interestingly, phosphorylation of eukaryotic initiation factor 4E-binding protein 1 at position Threonine70 was decreased, which is a crucial downstream of the mechanistic target of rapamycin complex 1 (mTORC1) pathway. Further studies showed that glutamine supplementation rescued cell proliferation and mTORC1 activity, dependent on lysosomal function and phospholipase D activation. CONCLUSION: In conclusion, glutamine activates mTORC1 signaling dependent on phospholipase D and a functional lysosome to promote intestinal epithelial cell proliferation. This discovery provides new insight into regulating the homeostasis of the intestinal epithelium, particularly in pig production.


Assuntos
Glutamina , Fosfolipase D , Animais , Suínos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Glutamina/farmacologia , Glutamina/metabolismo , Fosfolipase D/metabolismo , Intestinos , Proteínas/metabolismo , Mucosa Intestinal/metabolismo , Proliferação de Células
4.
Molecules ; 29(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38398607

RESUMO

Deoxynivalenol (DON) is a common mycotoxin that is widely found in various foods and feeds, posing a potential threat to human and animal health. This study aimed to investigate the protective effect of the natural polyphenol piceatannol (PIC) against DON-induced damage in porcine intestinal epithelial cells (IPEC-J2 cells) and the underlying mechanism. The results showed that PIC promotes IPEC-J2 cell proliferation in a dose-dependent manner. Moreover, it not only significantly relieved DON-induced decreases in cell viability and proliferation but also reduced intracellular reactive oxygen species (ROS) production. Further studies demonstrated that PIC alleviated DON-induced oxidative stress damage by increasing the protein expression levels of the antioxidant factors NAD(P)H quinone oxidoreductase-1 (NQO1) and glutamate-cysteine ligase modifier subunit (GCLM), and the mRNA expression of catalase (CAT), Superoxide Dismutase 1 (SOD1), peroxiredoxin 3 (PRX3), and glutathione S-transferase alpha 4 (GSTα4). In addition, PIC inhibited the activation of the nuclear factor-B (NF-κB) pathway, downregulated the mRNA expression of interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and tumor necrosis factor α (TNF-α) to attenuate DON-induced inflammatory responses, and further mitigated DON-induced cellular intestinal barrier injury by regulating the protein expression of Occludin. These findings indicated that PIC had a significant protective effect against DON-induced damage. This study provides more understanding to support PIC as a feed additive for pig production.


Assuntos
Células Epiteliais , NF-kappa B , Estilbenos , Tricotecenos , Suínos , Animais , Humanos , NF-kappa B/metabolismo , Linhagem Celular , RNA Mensageiro/metabolismo
5.
J Agric Food Chem ; 71(39): 14251-14262, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37738360

RESUMO

Glutamine (Gln) is the major energy source of intestinal porcine epithelial cells (IPEC-J2 cells) and plays a critical role in the nutritional physiological function of the intestine. However, the underlying mechanism requires further investigation. Here, the Gln-sensing pathway in IPEC-J2 cells was investigated. The results showed that Gln increased the cell proliferation. Subsequently, an analysis of the phosphorylated proteome revealed that Gln markedly upregulated ribosomal protein S6 (RPS6) phosphorylation at serine 235/236, suggesting that Gln activated the mTORC1 pathway. mTOR inhibition revealed that Gln promotes cell proliferation through the mTORC1 pathway. Similarly, blocking ADP-ribosylation factor 1 (Arf1) activity indicated that Gln-induced mTORC1 activation promoted cell proliferation in an Arf1-dependent manner. Additionally, the RagA/B pathway did not participate in Gln-induced mTORC1 activation. Collectively, these findings suggest that Gln-induced mTORC1 activation promotes IPEC-J2 cell proliferation via Arf1, not Rag GTPases. These results broaden our understanding of functional-cell-sensing amino acids, particularly Gln, that are regulated by mTORC1.


Assuntos
Fator 1 de Ribosilação do ADP , Glutamina , Animais , Suínos , Glutamina/farmacologia , Glutamina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fator 1 de Ribosilação do ADP/metabolismo , Intestinos , Proliferação de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA