Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Neurosci Res ; 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39245211

RESUMO

This review examines the complex interactions between estrogen receptors α and ß (ERα and ERß) and arginine vasopressin (AVP), delving into their significant roles in modulating empathy, a critical psychological component in human social dynamics. Empathy, integrating affective and cognitive elements, is anchored in neural regions like the amygdala and prefrontal cortex. ERα and ERß, pivotal in estrogen regulation, influence neurotransmitter dynamics and neural network activities, crucial for empathic development. AVP, key in regulating water balance, blood pressure, and social behaviors, interplays with these receptors, profoundly impacting empathic responses. The study highlights that ERα predominantly enhances empathy, especially affective empathy, by stimulating AVP synthesis and release. In contrast, ERß may diminish empathy in certain contexts by suppressing AVP expression and activity. The intricate interplay, homeostatic balance, and mutual conversion between ERα and ERß in AVP regulation are identified as challenging yet crucial areas for future research. These findings provide essential insights into the neurobiological underpinnings of empathy, offering new avenues for therapeutic interventions in social cognitive disorders and emotional dysregulation.

2.
Neuropharmacology ; 261: 110138, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39244013

RESUMO

When a naïve observer meets with a familiar conspecific in pain, mice may have a myriad of social (sniffing, allolicking, allogrooming, huddling) and non-social (self-grooming) behaviors under dyadic social interaction (DSI) paradigm. Unlike male, female observers express more allolicking behavior toward injury site of a familiar female in pain, but with less body allogrooming. In current study, we investigated roles of natural estrus cycle phases and ovarian estrogen in these behaviors and results showed that: (1) there was no changes in above behaviors in terms of latency, time and bouts across different natural estrus cycle phases in intact female. (2) however, ovariectomy (OVX) changed estrus cycle phases, lowered circulating level of ovarian estrogen, reduced time and bouts of allolicking behavior and increased time of self-grooming without affecting other behaviors. Moreover, OVX in observers decreased social buffering effect of DSI on spontaneous pain-related behavior in demonstrator relative to naïve and sham controls. (3) treatment of OVX-female with ß-estradiol (E2) or progesterone (PROG) as replacement therapies, only E2 reversed impairment of allolicking behavior. (4) Additionally, socially transferred pain could be identified in intact female across all estrus cycle phases post-DSI, but disappeared in OVX-female, which could be reversed completely by E2 but not by PROG. (5) Finally, serum levels of estrogen, PROG, oxytocin, arginine vasopressin (AVP), prolactin, norepinephrine and 5-HT were examined by ELISA after E2, results showed only AVP level was significantly increased. These results suggest both injury site-targeted caring behavior and socially transferred pain are selectively dependent on ovarian estrogen.

3.
Stem Cells Int ; 2024: 2005845, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38882597

RESUMO

Genetically modified intestinal organoids are being explored as potential surrogates of immortalized cell lines and gene-engineered animals. However, genetic manipulation of intestinal organoids is time-consuming, and the efficiency is far beyond satisfactory. To ensure the yield of the genetically modified organoids, large quantity of starting materials is required, and the procedure usually takes more than 10 days. Two major obstacles that restrict the genetic delivery efficiency are the three-dimensional culture condition and that the genetic delivery is carried out in cell suspensions. In the present study, we introduce a novel highly efficient strategy for building genetically modified intestinal organoids in which genetic delivery was performed in freshly established monolayer primary intestinal epithelial cells under two-dimensional conditions and subsequentially transformed into three-dimensional organoids. The total procedure can be finished within 10 hr while displaying much higher efficiency than the traditional methods. Furthermore, this strategy allowed for the selection of transgenic cells in monolayer conditions before establishing high-purity genetically modified intestinal organoids.

4.
Arch Oral Biol ; 164: 106001, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38749387

RESUMO

OBJECTIVE: The study aims to investigate Temporomandibular Joint Disorder (TMJD) through a interdisciplinary lens, integrating insights from neuroscience, dentistry, and psychology to dissect its complex pathophysiology and neural mechanisms. It focuses on exploring the neurobiological underpinnings of TMJD, emphasizing the role of pain perception, modulation, and the impact of neurophysiological changes on the disorder. DESIGN: This is a comprehensive narrative review of the literature. RESULTS: Research findings pinpoint altered pain perception and modulation processes as central neural mechanisms contributing to TMJD, highlighting the importance of personalized treatment approaches due to the disorder's complexity and patient variability. The study recognizes advances in neuroscience offering new treatment avenues, such as neuromodulation and biofeedback, which provide non-invasive and personalized options. However, it also addresses the challenges in TMJD research, such as the multifaceted nature of the disorder and the need for more comprehensive, interdisciplinary strategies in research and clinical practice. CONCLUSIONS: TMJD is a multifaceted disorder requiring an interdisciplinary approach for effective management. The study stresses the crucial role of neuroscience in understanding and treating TMJD, facilitating the development of innovative treatment strategies. It emphasizes the need for further research, advocating an integrated approach that combines neuroscience, dentistry, and psychology to address TMJD's complexities comprehensively and improve patient care, thereby enhancing the quality of life for affected individuals.


Assuntos
Transtornos da Articulação Temporomandibular , Humanos , Transtornos da Articulação Temporomandibular/terapia , Transtornos da Articulação Temporomandibular/fisiopatologia , Biorretroalimentação Psicológica , Neurociências
5.
Biomed Pharmacother ; 171: 116007, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171238

RESUMO

Diabetic cardiomyopathy (DCM) is a common complication of diabetes mellitus (DM). However, the mechanisms underlying DCM-induced cardiac injury remain unclear. Recently, the role of cyclic GMP-AMP synthase/stimulator of interferon gene (cGAS/STING) signaling and pyroptosis in DCM has been investigated. Based on our previous results, this study was designed to examine the impact of irisin, mitochondrial ubiquitin ligase (MITOL/MARCH5), and cGAS/STING signaling in DCM-induced cardiac dysfunction and the effect of gasdermin D (GSDMD)-dependent pyroptosis. High-fat diet-induced mice and H9c2 cells were used for cardiac geometry and function or pyroptosis-related biomarker assessment at the end of the experiments. Here, we show that DCM impairs cardiac function by increasing cardiac fibrosis and GSDMD-dependent pyroptosis, including the activation of MITOL and cGAS/STING signaling. Our results confirmed that the protective role of irisin and MITOL was partially offset by the activation of cGAS/STING signaling. We also demonstrated that GSDMD-dependent pyroptosis plays a pivotal role in the pathological process of DCM pathogenesis. Our results indicate that irisin treatment protects against DCM injury, mitochondrial homeostasis, and pyroptosis through MITOL upregulation.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Animais , Camundongos , Cardiomiopatias Diabéticas/patologia , Fibronectinas , Nucleotidiltransferases , Piroptose , Remodelação Ventricular , Ratos
6.
Aging (Albany NY) ; 15(24): 14617-14650, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37870748

RESUMO

Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related mortality in the world. However, identifying key genes that can be exploited for the effective diagnosis and management of HCC remains difficult. The study aims to examine the prognostic and diagnostic value of TRIM28-H2AX-CDK4 axis in HCC. Analysis in TCGA, GSEA and Gene expression profiling interactive analysis online tools were performed to explore the expression profiles of TRIM28, H2AX and CDK4. Data demonstrating the correlation between TRIM28 expression levels and immune infiltration states or the expression of genes associated with immune checkpoints genes were exacted from TCGA and TIMER. Genetic alteration and enrichment analysis were performed using the cBioPortal and GEPIA2 tools. Finally, the expression of these proteins in HCC was then examined and validated in an independent cohort using immunohistochemistry. TRIM28 alteration exhibited co-occurrence instead of mutual exclusivity with a large number of immune checkpoint components and tumor-infiltrating immune cells, especially B cells, were found to serve roles in patients with HCC with different TRIM28 expression levels. Higher expression levels of TRIM28, H2AX and CDK4 were associated with a poorer prognosis and recurrence in patients with HCC according to TCGA, which was validated further in an independent cohort of patients with HCC. Area under curve revealed the superior predictive power of applying this three-gene signatures in this validation cohort. The diagnostic model based on this TRIM28-H2AX-CDK4 signature is efficient and provides a novel strategy for the clinical management of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Linfócitos B , Perfilação da Expressão Gênica , Mutação , Prognóstico , Proteína 28 com Motivo Tripartido , Quinase 4 Dependente de Ciclina/genética
7.
Vasc Health Risk Manag ; 19: 673-688, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37881333

RESUMO

Introduction: Pulmonary arterial hypertension (PAH) is a life-threatening disease characterized by a sustained rise in mean pulmonary artery pressure. Pulmonary vascular remodeling serves an important role in PAH. Identifying a key driver gene to regulate vascular remodeling of the pulmonary microvasculature is critical for PAH management. Methods: Differentially expressed genes were identified using the Gene Expression Omnibus (GEO) GSE117261, GSE48149, GSE113439, GSE53408 and GSE16947 datasets. A co-expression network was constructed using weighted gene co-expression network analysis. Novel and key signatures of PAH were screened using four algorithms, including weighted gene co-expression network analysis, GEO2R analysis, support vector machines recursive feature elimination and robust rank aggregation rank analysis. Regulator of G-protein signaling 5 (RGS5), a pro-apoptotic/anti-proliferative protein, which regulate arterial tone and blood pressure in vascular smooth muscle cells. The expression of RGS5 was determined using reverse transcription-quantitative PCR (RT-qPCR) in PAH and normal mice. The location of RGS5 and pericytes was detected using immunofluorescence. Results: Compared with that in the normal group, RGS5 expression was upregulated in the PAH group based on GEO and RT-qPCR analyses. RGS5 expression in single cells was enriched in pericytes in single-cell RNA sequencing analysis. RGS5 co-localization with pericytes was detected in the pulmonary microvasculature of PAH. Conclusion: RGS5 regulates vascular remodeling of the pulmonary microvasculature and the occurrence of PAH through pericytes, which has provided novel ideas and strategies regarding the occurrence and innovative treatment of PAH.


Assuntos
Hipertensão Arterial Pulmonar , Proteínas RGS , Camundongos , Humanos , Animais , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/metabolismo , Remodelação Vascular , Pericitos/metabolismo , Músculo Liso Vascular , Hipertensão Pulmonar Primária Familiar , Biomarcadores , Artéria Pulmonar/metabolismo , Proliferação de Células , Proteínas RGS/genética , Proteínas RGS/metabolismo
8.
Cell Death Dis ; 14(7): 421, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443302

RESUMO

The secretory properties of cancer-associated fibroblasts (CAFs) play predominant roles in shaping a pro-metastatic tumor microenvironment. The present study demonstrated that SLIT2, an axon guidance protein, produced by CAFs and promoted gastric cancer (GC) metastasis in two gastric cancer cell lines (AGS and MKN45) by binding to roundabout guidance receptor 1 (ROBO1). Mass-spectrometry analysis revealed that ROBO1 could interact with NEK9, a serine/threonine kinase. And their mutual binding activities were further enhanced by SLIT2. Domain analysis revealed the kinase domain of NEK9 was critical in its interaction with the intracellular domain (ICD) of ROBO1, and it also directly phosphorylated tripartite motif containing 28 (TRIM28) and cortactin (CTTN) in AGS and MKN45 cells. TRIM28 function as a transcriptional elongation factor, which directly facilitate CTTN activation. In addition, Bioinformatics analysis and experimental validation identified transcriptional regulation of STAT3 and NF-κB p100 by TRIM28, and a synergetic transcription of CTTN by STAT3 and NF-κB p100 was also observed in AGS and MKN45. Therefore, CAF-derived SLIT2 increased the expression and phosphorylation levels of CTTN, which induced cytoskeletal reorganization and GC cells metastasis. A simultaneous increase in the expression levels of NEK9, TRIM28 and CTTN was found in metastatic GC lesions compared with paired non-cancerous tissues and primary cancer lesions via IHC and Multiplex IHC. The analysis of the data from a cohort of patients with GC revealed that increased levels of NEK9, TRIM28 and CTTN were associated with a decreased overall survival rate. On the whole, these findings revealed the connections of CAFs and cancer cells through SLIT2/ROBO1 and inflammatory signaling, and the key molecules involved in this process may serve as potential biomarkers and therapeutic targets for GC.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , NF-kappa B , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Movimento Celular , Microambiente Tumoral , Quinases Relacionadas a NIMA/genética
9.
J Inflamm Res ; 15: 6729-6743, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36536645

RESUMO

Background: Tumor growth depends on tumor cells and the tumor microenvironment, which are regulated by inflammation and immune responses. However, the roles of inflammation and immune status in hepatocellular carcinoma (HCC) remain unclear. The aim of this study was to evaluate the prognostic value of an inflammatory response- related gene signature associated with immune status, which may provide insight into new treatment options for HCC patients. Materials and Methods: Differentially expressed genes associated with inflammation were obtained from The Cancer Genome Atlas (TCGA), the Gene Expression Omnibus, and the Molecular Signatures Database. An inflammation-associated prognostic gene signature was constructed and validated using TCGA and the International Cancer Genome Consortium datasets, respectively, using LASSO Cox regression analysis. Log-rank was performed to compare the overall survival of low- and high-risk score cohorts. Immune cell infiltration and immune-related functions were analyzed using single-sample gene enrichment analysis. The structures of the drugs identified by the prognostic model were predicted using PubChem. The drugs sensitivity of bleomycin, simvastatin and zoledronate detected by CCK8 colorimetric assay. The mRNA levels of 7 genes in HCC after drug treatment analyzed via qRT-PCR. Results: Inflammation-associated genes, including ITGA5, MEP1A, P2RX4, RIPK2, SLC7A1 and SRI, were identified and found to be associated with the prognosis of HCC. We further found that the high-risk patients experienced poor prognosis, which was observed to be an independent and significant risk factor for prognosis. Moreover, we observed elevated expression levels in multiple immune cell types and immune function. Lastly, we validated that bleomycin, simvastatin and zoledronate could regulate these genes in HCC. Conclusion: The inflammatory-response-associated gene signature could predict the prognosis and the immunological status of HCC patients. Additionally, bleomycin, simvastatin and zoledronate may represent potential drug candidates that could inhibit these genes. This may constitute a new approach for the treatment of HCC.

10.
Front Immunol ; 13: 903758, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36016939

RESUMO

Ferroptosis is a more relatively recently identified type of programmed cell death, which is associated with tumor progression. However, the mechanism underlying the effect of ferroptosis-related long non-coding RNAs (lncRNAs) in lung adenocarcinoma (LUAD) remains elusive. Therefore, the current study aimed to investigate the role of ferroptosis-related lncRNAs in LUAD and to develop a prognostic model. The clinicopathological characteristics of patients and the gene sequencing data were obtained from The Cancer Genome Atlas, while the ferroptosis-associated mRNAs were downloaded from the FerrDb database. A ferroptosis-related lncRNA signature was established with Least Absolute Shrinkage and Selection Operator Cox regression analysis. Furthermore, the risk scores of ferroptosis-related lncRNAs were calculated and LUAD patients were then assigned to high- and low-risk groups based on the median risk score. The prognostic model was established by K-M plotters and nomograms. Gene set enrichment analysis (GSEA) was performed to evaluate the association between immune responses and ferroptosis-related lncRNAs. A total of 10 ferroptosis-related lncRNAs were identified as independent predictors of LUAD outcome, namely RP11-386M24.3, LINC00592, FENDRR, AC104699.1, AC091132.1, LANCL1-AS1, LINC-PINT, IFNG-AS1, LINC00968 and AC006129.2. The area under the curve verified that the established signatures could determine LUAD prognosis. The nomogram model was used to assess the predictive accuracy of the established signatures. Additionally, GSEA revealed that the 10 ferroptosis-related lncRNAs could be involved in immune responses in LUAD. Overall, the results of the current study may provide novel insights into the development of novel therapies or diagnostic strategies for LUAD.


Assuntos
Adenocarcinoma , Ferroptose , RNA Longo não Codificante , Adenocarcinoma/genética , Ferroptose/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Pulmão/patologia , Prognóstico , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Microambiente Tumoral/genética
11.
J Pineal Res ; 73(2): e12813, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35661247

RESUMO

Melatonin is a hormone synthesized in the pineal gland and has widespread physiological and pharmacological functions. Moreover, it can activate protective receptor-dependent processes. These processes can prevent tissue carcinogenesis and inhibit malignant tumor progression and metastasis. Therefore, we investigated the regulatory effects of melatonin on dysregulated circular RNAs in human lung adenocarcinoma (LUAD) cells. In this study, we treated LUAD cells with melatonin and measured the expression of hsa_circ_0017109, miR-135b-3p, and TOX3 by quantitative reverse transcription polymerase chain reaction. Colony formation and cell counting kit-8 assays were used to determine cell proliferation. The wound-healing assay and Transwell experiment were carried out to evaluate the migration potential and invasive capacity of LUAD cells. Also, cell apoptosis was detected using a cell apoptosis kit, and protein production was identified by Western blot. It was suggested that melatonin could inhibit LUAD progression in vivo and in vitro, and the role of TOX3 in this process was explored. Additionally, hsa_circ_0017109 was found to sponge miR-135b-3p, a downstream factor of circ_0017109, which was demonstrated to target TOX3 in LUAD cells and could promote the Hippo pathway and epithelial-mesenchymal transition pathway. To summarize, we demonstrated that melatonin decreases the expression of circ_0017109 and suppresses the non-small-cell lung cancer cell migration, invasion, and proliferation through decreasing TOX3 expression via direct activation of miR-135b-3p.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Melatonina , MicroRNAs , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Progressão da Doença , Humanos , Neoplasias Pulmonares/metabolismo , Melatonina/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo
12.
Bioengineered ; 13(6): 14605-14615, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35758029

RESUMO

Cytoskeletal reorganization and epithelial-to-mesenchymal transition (EMT) are key processes and typical characteristics of metastatic cancer cells. Rho GTPase­activating protein 35 (ARHGAP35) is a GTPase-activating protein, which has a significant effect on cell motility. However, the particular function of ARHGAP35 in gastric cancer (GC) remains unknown. In the present study, the role of ARHGAP35 in GC was investigated by in vitro loss-of-function and gain-of-function experiments. Cytoskeletal reorganization in GC cells was evaluated using immunofluorescence staining and the protein expression levels of key molecules and active RhoA were detected by western blot analysis. Additionally, the clinical evaluation of proteins in human GC tissues was assessed by immunohistochemistry. The results showed that ARHGAP35, a tumor suppressor, was downregulated in GC tissues and its decreased expression was associated with the metastatic status of GC. Additionally, Transwell and wound healing assays demonstrated that ARHGAP35 knockdown promoted cell motility in vitro. However, the above effects were abrogated following ectopic ARHGAP35 expression. Furthermore, ARHGAP35 could affect cytoskeletal reorganization via directly regulating RhoA activation. In addition, ARHGAP35 upregulated E-cadherin and attenuated EMT in GC cells. Both ARHGAP35 and E-cadherin were associated with overall survival in patients with GC, while their combination allowed for an even greater capacity for distinguishing GC patients with different prognosis. Overall, the results of the current study suggested that ARHGAP35 could directly regulate cell morphology and motility via affecting cytoskeletal reorganization and EMT via targeting RhoA and E-cadherin, respectively. Targeting the ARHGAP35/RhoA/E-cadherin pathway could be a potential approach for treating GC.


Assuntos
Citoesqueleto , Fatores de Troca do Nucleotídeo Guanina , Proteínas Repressoras , Neoplasias Gástricas , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Citoesqueleto/metabolismo , Citoesqueleto/patologia , Proteínas Ativadoras de GTPase/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Metástase Neoplásica , Proteínas Repressoras/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia
13.
Pain Physician ; 25(2): E271-E283, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35322982

RESUMO

BACKGROUND: It is frequently reported that neuropathic pain is associated with abnormalities in brain function and structure as well as cognitive deficits. However, the contributing mechanisms have remained elusive. OBJECTIVES: We aimed to investigate the systemic ultrastructural changes of the peripheral nervous system (PNS) and central nervous system (CNS) in rats with trigeminal neuralgia (TN) induced by cobra venom, as well as the effects and mechanisms of electroacupuncture (EA) and pregabalin (PGB) on TN. STUDY DESIGN: This study used an experimental design in rats. SETTING: The research took place in the laboratory at the Aviation General Hospital of China Medical University and Beijing Institute of Translational Medicine. METHODS: Male Sprague-Dawley rats were randomly divided into 4 groups (n = 12/group): cobra venom (CV), PGB, EA, and sham-operated (SHAM). The development of pain-related behaviors and spatial learning and memory abilities were measured using video recordings and Morris water maze tests, respectively. The ultrastructural changes of the PNS and CNS were examined using transmission electron microscopy. We also screened the differentially expressed genes and proteins in the prefrontal cortex  and hippocampus using  ribonucleic acid sequencing and isobaric tag for relative and absolute quantitation techniques, respectively. Data for the behavioral tests and molecular biology were analyzed with a one-way analysis of variance. RESULTS: The rats in the CV group exhibited long-lasting pain-like behaviors, cognitive deficits, and systemic ultrastructural changes. Both EA and PGB alleviated the chronic pain syndrome, but EA also inhibited the chronic pain-induced cognitive dysfunction and restored normal cellular structures, while PGB was associated with no improvements. Transcriptomic and proteomic analyses revealed marcks, pak2 and acat1 were altered in rats with TN but were adjusted back to baseline by EA but not by PGB. LIMITATIONS: We examined systemic ultrastructural alterations at different levels of the nervous system; however, the detailed timeline of the damage process was not explicitly delineated.  Moreover, the current study provides only preliminary evidence for the neurobiological mechanisms of cognitive impairment resulting from chronic pain.  Further research is still necessary (using models such as gene knockout rats and cell cultures) before a detailed mechanism can be postulated. CONCLUSIONS: EA treatment may offer significant advantages when compared to PGB for the treatment of cognitive impairment associated with chronic pain. Moreover, marcks, pak2 and acat1 may be the potential therapeutic targets of EA.


Assuntos
Dor Crônica , Eletroacupuntura , Neuralgia do Trigêmeo , Animais , Humanos , Masculino , Ratos , Dor Crônica/terapia , Venenos Elapídicos , Eletroacupuntura/métodos , Pregabalina , Proteômica , Ratos Sprague-Dawley , Aprendizagem Espacial/fisiologia , Neuralgia do Trigêmeo/psicologia
14.
Front Psychiatry ; 13: 813103, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35356723

RESUMO

Background: Post-traumatic stress disorder (PTSD) is a serious stress-related disorder caused by traumatic experiences. However, identifying a key therapy that can be used for PTSD treatment remains difficult. Ketamine, a well-known dissociative anesthetic, is considered safe to be used in anesthesia, pain management, and antidepressant actions since 1970. At present, it is still controversial whether PTSD can be treated with ketamine. The authors performed a meta-analysis to determine whether the use of perioperative ketamine lowers the incidence of PTSD. Methods: Cochrane Central Register of Controlled Trials, Embase, PubMed, and Web of Science were searched to examine the use of ketamine for the treatment of PTSD among soldiers with combating experience. Studies were included if they were randomized placebo-controlled, case-control, and cohort studies. The primary outcome was the incidence of PTSD in the later stage of the wounded or burn soldiers. The secondary outcome was the influence of ketamine on PTSD-scale scores for early and chronic PTSD, respectively. Results: Our search yielded a total of three studies (n = 503 patients) comparing the use of ketamine (n = 349) to control (n = 154). The available evidence showed no significant difference in the incidence of PTSD between combatant soldiers on the battlefield with or without ketamine treatment (risk ratio = 0.81, 95% CI, 0.63-1.04; P = 0.10). In 65 patients from three trials, ketamine was not only ineffective in treating early PTSD but also lead to exacerbation of the disease (risk ratio = 2.45, 95% CI, 1.33-3.58; P < 0.001). However, in 91 patients from the other three trials, ketamine is effective in treating chronic PTSD (risk ratio = -3.66, 95% CI, -7.05 to -0.27; P = 0.03). Conclusion: Ketamine was not effective on lower the PTSD incidence for soldiers on the battlefield, nor on the PTSD-scale scores in early PTSD patients. However, it may improve the PTSD-scale scores for chronic conditions. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021255516, PROSPERO, identifier: CRD42021255516.

15.
Cell Oncol (Dordr) ; 44(5): 1119-1131, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34510400

RESUMO

PURPOSE: Intestinal metaplasia (IM) is a precancerous lesion that increases the risk of subsequent gastric cancer (GC) development. Previously, miR-1 has been shown to play an essential role in the initiation of bile acid (BA)-induced IM. The objective of the present study was to investigate the mechanism underlying miR-1 inhibition by BA in gastric cells. METHODS: Ingenuity pathway analysis (IPA) was used to identify molecules acting upstream of miR-1. The effects of deoxycholic acid (DCA), FXR and SNAI2 on the expression of intestinal markers were assessed using quantitative real-time PCR (qRT-PCR) and Western blotting. The expression level of major molecules was detected by immunohistochemistry (IHC) in tissue microarrays. The transcriptional regulation of miR-1 was verified using luciferase reporter and chromatin immunoprecipitation (ChIP) assays. RESULTS: We found that BA treatment caused aberrant expression of FXR and intestinal markers in gastric cells. Augmented FXR led to transcriptional activation of SNAI2, which in turn suppressed the miR-1 promoter. Moreover, we found that compared with normal tissues, the expression levels of both FXR and SNAI2 were increased and positively correlated with each other in IM tissues. Additionally, their expression showed an inverse correlation with that of miR-1 in IM tissues. CONCLUSIONS: Our findings indicate that FXR may be responsible for a series of molecular changes in gastric cells after BA treatment, and that the FXR/SNAI2/miR-1 axis exhibits a crucial role in BA-induced progression of IM. Blocking the FXR-oriented axis may provide a promising approach for IM or even GC treatment.


Assuntos
Ácidos e Sais Biliares/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Intestinos/metabolismo , MicroRNAs/genética , Receptores Citoplasmáticos e Nucleares/genética , Fatores de Transcrição da Família Snail/genética , Estômago/metabolismo , Western Blotting , Linhagem Celular Tumoral , Humanos , Intestinos/patologia , Metaplasia , Interferência de RNA , Receptores Citoplasmáticos e Nucleares/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Transcrição da Família Snail/metabolismo , Estômago/patologia
16.
Neuroscience ; 466: 148-161, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33895343

RESUMO

Anesthesia and surgery are associated with perioperative neurocognitive disorders (PND). Dexmedetomidine is known to improve PND in rats; however, little is known about the mechanisms. Male Sprague-Dawley rats were subjected to resection of the hepatic apex under propofol anesthesia to clinically mimic human abdominal surgery. The rats were divided into four groups: control group (C), anesthesia group (A), model group (M), and model + dex group (D). Cognitive function was evaluated with the Morris water maze (MWM). Neuronal morphology was observed with H&E staining, Nissl's staining and immunohistochemistry. Transcriptome analysis and quantitative real-time PCR were performed to investigate functional mitochondrial mRNA changes in the hippocampus. Protein levels were measured by Western blotting at 1, 3, and 7 days after surgery. Surgery-induced cognitive decline lasted for three days, but not seven days after surgery in the M group; however, rats in the D group were significantly improved by dexmedetomidine. No significant differences in the number of neurons were observed between the groups after surgery. Rats from the M group showed significantly greater expression levels of Iba-1 and GFAP compared with the C group and the D group. Rats in the M group demonstrated increased Surf1 and Cytochrome c expression on days 1 and 3, but not day 7; similar changes were not induced in rats in the D group. Dexmedetomidine appears to reverse surgery-induced behavior, mitigate the higher density of Iba-1 and GFAP, and downregulate the expression of Surf1 and Cytochrome c protein in the hippocampus of rats in a PND model.


Assuntos
Dexmedetomidina , Propofol , Animais , Citocromos c , Dexmedetomidina/farmacologia , Hipocampo , Masculino , Transtornos da Memória/tratamento farmacológico , Ratos , Ratos Sprague-Dawley
17.
Theranostics ; 11(5): 2460-2474, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33500736

RESUMO

Rationale: Inflammatory stimuli from the tumor microenvironment play important roles in cancer progression. However, the mechanism of promotion of cancer metastasis by inflammation in gastric cancer (GC) is poorly understood. Methods: The roles of NEK9 were validated via loss-of-function and gain-of-function experiments in vitro and in an animal model of metastasis. Cytoskeletal reorganization-associated molecules were detected by GST pull-down. The regulation of ARHGEF2 by NEK9 was investigated by phosphoproteomics analysis, immunoprecipitation (IP) and in vitro kinase assay. The transcriptional regulation of miR-520f-3p was studied using luciferase reporter and chromatin immunoprecipitation (ChIP). The expression of these proteins in GC tissues was examined by immunohistochemistry. Results: NEK9 directly regulates cell motility and RhoA activation in GC. The phosphorylation of ARHGEF2 by NEK9 is the key step of this process. NEK9 is a direct target of miR-520f-3p, which is transcriptionally suppressed by IL-6-mediated activation of STAT3. A decrease in miR-520f-3p leads to the amplification of IL-6/STAT3 by targeting GP130. A simultaneous elevation of the levels of NEK9, GP130 and p-STAT3 was confirmed in the lymph nodes and distant metastases. An increase in NEK9, GP130 and STAT3 is associated with reduced overall survival of GC patients. Conclusion: This study demonstrates that activation of STAT3 by IL-6 transcriptionally suppresses miR-520f-3p and diminishes the inhibitory effects of miR-520f-3p on NEK9 and GP130. An increase in GP130 enhances this signaling, and NEK9 directly influences cell motility and RhoA activation by targeting the phosphorylation of ARHGEF2. Targeting the IL-6-STAT3-NEK9 pathway may be a new strategy for GC treatment.


Assuntos
Interleucina-6/metabolismo , Neoplasias Hepáticas/secundário , Neoplasias Pulmonares/secundário , Quinases Relacionadas a NIMA/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Fator de Transcrição STAT3/metabolismo , Neoplasias Gástricas/patologia , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Interleucina-6/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Quinases Relacionadas a NIMA/genética , Fosforilação , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fator de Transcrição STAT3/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Células Tumorais Cultivadas , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Gastric Cancer ; 24(1): 103-116, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32705446

RESUMO

BACKGROUND: Gastric intestinal metaplasia (IM) is considered a precancerous lesion, and bile acids (BA) play a critical role in the induction of IM. Ectopic expression of HNF4α was observed in a BA-induced IM cell model. However, the mechanisms underlying the upregulation of the protein in IM cells remains to be elucidated. METHODS: The effects of HNF4α on gastric mucosal cells in vivo were identified by a transgenic mouse model and RNA-seq was used to screen downstream targets of deoxycholic acid (DCA). The expression of pivotal molecules and miR-1 was detected by immunohistochemistry and in situ hybridization in normal, gastritis and IM tissue slides or microarrays. The transcriptional regulation of HDAC6 was investigated by chromatin immunoprecipitation (ChIP) and luciferase reporter assays. RESULTS: The transgenic mouse model validated that HNF4α stimulated the HDAC6 expression and mucin secretion in gastric mucosa. Increased HDAC6 and HNF4α expression was also detected in the gastric IM cell model and patient specimens. HNF4α could bind to and activate HDAC6 promoter. In turn, HDAC6 enhanced the HNF4α protein level in GES-1 cells. Furthermore, miR-1 suppressed the expression of downstream intestinal markers by targeting HDAC6 and HNF4α. CONCLUSIONS: Our findings show that the HDAC6/HNF4α loop regulated by miR-1 plays a critical role in gastric IM. Blocking the activation of this loop could be a potential approach to preventing BA-induced gastric IM or even gastric cancer (GC).


Assuntos
Mucosa Gástrica/patologia , Fator 6 Nuclear de Hepatócito/metabolismo , Desacetilase 6 de Histona/metabolismo , MicroRNAs/metabolismo , Neoplasias Gástricas/genética , Animais , Ácidos e Sais Biliares/metabolismo , Modelos Animais de Doenças , Mucosa Gástrica/metabolismo , Gastrite/genética , Regulação da Expressão Gênica/genética , Humanos , Imuno-Histoquímica , Hibridização In Situ , Metaplasia/genética , Camundongos , Lesões Pré-Cancerosas/genética , Regiões Promotoras Genéticas/genética , Neoplasias Gástricas/patologia , Transcrição Gênica/genética
19.
Pain Physician ; 21(5): E509-E521, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30282399

RESUMO

BACKGROUND: Electroacupuncture (EA) has been proved to be effective in treating certain neuropathic pain conditions. The mechanisms of pain relief by EA are not fully understood. There have been sporadic reports of damage in the peripheral nervous system (PNS) and regions of the central nervous system (CNS) at the ultrastructural level following peripheral nerve injury. However, information about possible systemic changes in the PNS and CNS after nerve injury is scarce. OBJECTIVES: The goal of this study was to examine the ultrastructural changes of the nervous system induced by a local injection of cobra venom into the sciatic nerve and to compare the ultrastructural changes in rats with or without treatment with EA or pregabalin. STUDY DESIGN: An experimental study. SETTING: Department of Anesthesiology, Pain Medicine, and Critical Care Medicine, Aviation General Hospital of China Medical University. METHODS: In this study, using an established model of sciatic neuralgia induced by local injection of cobra venom into the sciatic nerve, we examined ultrastructural changes of the PNS and CNS and how they respond to EA and pregabalin treatment. EA and pregabalin were given daily from postoperative day (POD) 14 to 36. Based on previous works, the frequency of EA stimulation of the ST36 and GB34 acupoints was held to 2/100 Hz variable. Pain sensitivity in the sciatic neuralgia rats with and without treatments was assessed using the von Frey test. Ultrastructural alterations were examined bilaterally in the prefrontal cortex, hippocampus, medulla oblongata; and the cervical, thoracic, and lumbar spinal cords on PODs 14, 40, and 60. Ultrastructural examinations were also carried out on the bilateral sciatic nerves and dorsal root ganglion (DRG) at the cervical, thoracic and lumbar levels. In rats treated with EA or pregabalin, the ultrastructure was examined on PODs 40 and 60. RESULTS: Behavioral signs of pain and systemic ultrastructural changes including demyelination were observed at all levels of the PNS and CNS in rats with sciatic neuralgia. After intervention, the mechanical withdrawal thresholds of the EA group and pregabalin group were significantly higher than that of the cobra venom group (P < 0.05). Both EA and pregabalin treatments partially reversed increased cutaneous sensitivity to mechanical stimulation. However, only the EA treatment was able to repair the ultrastructural damages caused by cobra venom. LIMITATIONS: The results confirm that peripheral nerve injury led to the ultrastructural damage at different levels of the CNS as demonstrated with electron microscopy; however, we need to further verify this at both the molecular level and in light microscope level. Sciatic neuralgia induced by cobra venom is a chemical injury, and whether this exactly mimics a peripheral nerve mechanical injury is still unclear. CONCLUSIONS: Local cobra venom injection leads to systemic neurotoxicity. EA and pregabalin alleviate pain via different mechanisms. KEY WORDS: Sciatic neuralgia, cobra venom, demyelination, electroacupuncture, pregabalin, rat model.


Assuntos
Eletroacupuntura/métodos , Neuralgia/patologia , Analgésicos/farmacologia , Animais , Encéfalo/patologia , Encéfalo/ultraestrutura , China , Venenos Elapídicos/toxicidade , Gânglios Espinais/patologia , Gânglios Espinais/ultraestrutura , Masculino , Neuralgia/induzido quimicamente , Limiar da Dor/efeitos dos fármacos , Limiar da Dor/fisiologia , Pregabalina/farmacologia , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/patologia , Nervo Isquiático/ultraestrutura , Medula Espinal/patologia , Medula Espinal/ultraestrutura
20.
Oxid Med Cell Longev ; 2018: 8596903, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29643977

RESUMO

Depression is a common, devastating illness. Due to complicated causes and limited treatments, depression is still a major problem that plagues the world. Silent information regulator 1 (Sirt1) is a deacetylase at the consumption of NAD+ and is involved in gene silencing, cell cycle, fat and glucose metabolism, cellular oxidative stress, and senescence. Sirt1 has now become a critical therapeutic target for a number of diseases. Recently, a genetic study has received considerable attention for depression and found that Sirt1 is a potential gene target. In this short review article, we attempt to present an up-to-date knowledge of depression and Sirt1 of the sirtuin family, describe the different effects of Sirt1 on depression, and further discuss possible mechanisms of Sirt1 including glial activation, neurogenesis, circadian control, and potential signaling molecules. Thus, it will open a new avenue for clinical treatment of depression.


Assuntos
Depressão/enzimologia , Sirtuína 1/metabolismo , Animais , Depressão/genética , Humanos , Sirtuína 1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA