Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Metabolites ; 14(6)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38921439

RESUMO

Aging is an irreversible process of natural degradation of bodily function. The increase in the aging population, as well as the rise in the incidence of aging-related diseases, poses one of the most pressing global challenges. Hemp seed oil, extracted from the seeds of hemp (Cannabis sativa L.), possesses significant nutritional and biological properties attributed to its unique composition of polyunsaturated fatty acids and various antioxidant compounds. However, there is limited knowledge regarding the anti-aging mechanism of hemp seed oil. This study aimed to evaluate the beneficial effects and potential mechanisms of hemp seed oil in a D-galactose (D-gal)-induced aging rat model through a combined analysis of metabolomics and 16S rRNA gene sequencing. Using nuclear magnetic resonance (NMR)-based metabolomics, significant alterations in serum and urine metabolic phenotypes were observed between the D-gal-induced aging rat model and the healthy control group. Eight and thirteen differentially expressed metabolites related to aging were identified in serum and urine, respectively. Treatment with hemp seed oil significantly restored four and ten potential biomarkers in serum and urine, respectively. The proposed pathways primarily included energy metabolism, amino acid metabolism, one-carbon metabolism, and lipid metabolism. Furthermore, 16S rRNA gene sequencing analysis revealed significant changes in the gut microbiota of aged rats. Compared to the model group, the hemp seed oil group exhibited significant alterations in the abundance of 21 bacterial taxa at the genus level. The results indicated that hemp seed oil suppressed the prevalence of pathogenic bacterial genera such as Streptococcus, Rothia, and Parabacteroides. Additionally, it facilitated the proliferation of the genera Lachnospirace_NK4B4_group and Lachnospirace_UCG_001, while also enhancing the relative abundance of the genus Butyricoccus; a producer of short-chain fatty acids (SCFAs). These findings provided new insights into the pathogenesis of aging and further supported the potential utility of hemp seed oil as an anti-aging therapeutic agent.

2.
Environ Pollut ; 356: 124361, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38871167

RESUMO

The effects of soil pH variations induced by submergence/drainage and biochar application on soil cadmium (Cd) availability to different rice (Oryza sativa L.) varieties are not well understood. This study aims to investigate the possible reasons for available Cd(II) reduction in paddy soil as influenced by biochar and to determine Cd(II) absorption and translocation rates in different parts of various rice varieties. A pot experiment in a greenhouse using four japonica and four indica rice varieties was conducted in Cd(II) contaminated paddy soil with peanut straw biochar. The results indicated that the submerging led to an increase in soil pH due to the consumption of protons (H+) by the reduction reactions of iron/manganese (Fe/Mn) oxides and sulfate (SO42-) and thus the decrease in soil available Cd(II) contents. However, the drainage decreased soil pH due to the release of protons during the oxidation of Fe2+, Mn2+, and S2- and thus the increase in soil available Cd(II) contents. Application of the biochar increased soil pH during soil submerging and inhibited the decline in soil pH during soil drainage, and thus decreased soil available Cd(II) contents under both submerging and drainage conditions. The indica rice varieties absorbed more Cd(II) in their roots and accumulated higher amounts of Cd(II) in their shoots and grains than the japonica rice varieties. The Cd(II) sensitive varieties exhibited a greater absorption and translocation rate of Cd(II) compared to the tolerant varieties of both indica and japonica rice. Biochar inhibited the absorption and accumulation of Cd(II) in the rice varieties, which ultimately lowered the Cd(II) contents in rice grains below the national food safety limit (0.2 mg kg-1). Overall, planting japonica rice varieties in Cd(II) polluted paddy soils combined with the use of biochar can effectively reduce Cd(II) content in rice grains which protects human health against Cd(II) toxicity.

3.
Plant Physiol Biochem ; 213: 108838, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38878388

RESUMO

Grasslands, the largest carbon pool in China, possess enormous potential for carbon sequestration. Increasing the stomatal aperture to increase the CO2 absorption capacity is a potential method to improve plant photosynthetic efficiency and ultimately enhance the carbon sequestration capacity of grass plants. Research on stomatal aperture regulation has focused mostly on Arabidopsis or crops, while research on grass plants in these areas is scarce, which seriously restricts the implementation of this grassland carbon sequestration strategy. Here, a widely used ecological grass, centipedegrass, was used as the experimental material. First, a convenient method for observing the stomatal aperture was developed. The leaves were floated in a potassium ion-containing open solution (67 mM KCl, pH 6.0) with the adaxial surface rather than the abaxial surface in contact with the solution and were cultivated under light for 1.5 h. Then, nail polish was applied on the adaxial surface, and a large number of open stomata were imprinted. Second, with the help of this improved method, the concentration‒response characteristics of the stomatal aperture to eleven environmental stimuli were tested. The stomatal aperture is dependent on these environmental stimuli in a concentration-dependent manner. The addition of 100 µM brassinolide led to the maximal stomatal aperture. This study provided a technical basis for manipulating stomatal opening to increase the carbon sequestration capacity of centipedegrass.


Assuntos
Estômatos de Plantas , Poaceae , Estômatos de Plantas/fisiologia , Poaceae/fisiologia , Poaceae/metabolismo , Folhas de Planta/fisiologia , Folhas de Planta/metabolismo , Brassinosteroides/metabolismo
4.
Environ Sci Pollut Res Int ; 31(21): 30399-30414, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38607481

RESUMO

The rapid increase in soil acidity coupled with the deleterious effects of cadmium (Cd) toxicity had led to a decline in worldwide agricultural production. Rice absorbs and accumulates Cd(II) from polluted paddy soils, increasing human health risks throughout the food chain. A 35-day hydroponic experiment with four japonica and four indica (two each of them tolerant and sensitive cultivars) was conducted in this study to investigate the adsorption and absorption of Cd(II) by rice roots as related with surface chemical properties of the roots. The results showed that the three chemical forms of exchangeable, complexed, and precipitated Cd(II) increased with the increase in Cd(II) concentration for all rice cultivars. The roots of indica rice cultivars carried more negative charges and had greater functional groups and thus adsorbed more exchangeable and complexed Cd(II) than those of japonica rice cultivars. This led to more absorption of Cd(II) by the roots and greater toxicity of Cd(II) to the roots of indica rice cultivars and more inhibition of Cd(II) stress on the growth of the roots and whole plants of indica rice cultivars compared with japonica rice cultivars, which was one of the main reasons for more declines in the biomass and length of indica rice roots and shoots than japonica rice cultivars. Cd(II) stress showed more toxicity to the sensitive rice cultivars and thus greater inhibition on the growth of the cultivars due to more exchangeable and complexed Cd(II) adsorbed by their roots induced by more negative charges and functional groups on the roots compared with tolerant rice cultivar for both indica and japonica, which resulted in greater decreases in the biomass and length of roots and shoots as well as chlorophyll contents of the sensitive cultivars than the tolerant cultivars. The roots of sensitive rice cultivars also absorbed more Cd(II) than tolerant rice cultivars due to the same reasons as above. These findings will provide useful references for the safe utilization and health risk prevention of Cd-contaminated paddy fields.


Assuntos
Cádmio , Oryza , Raízes de Plantas , Poluentes do Solo , Oryza/metabolismo , Cádmio/metabolismo , Cádmio/toxicidade , Raízes de Plantas/metabolismo , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Adsorção , Solo/química
5.
Int J Biol Macromol ; 264(Pt 2): 130345, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401587

RESUMO

Cellulose is a sustainable natural polymer material that has found widespread application in transformers and other power equipment because of its excellent electrical and mechanical performance. However, the utility of cellulose materials has been limited by the challenge of balancing heat resistance with flexibility. On the basis of the preliminary research conducted by the research team, further proposals have been put forward for a method involving disk milling to create a "micro-nanocollaboration" network for the fabrication of flexible, high-temperature-resistant, and ultrafine fiber-based cellulose insulating films. The resulting full-component cellulose films exhibited impressive properties, including high tensile strength (22 MPa), flexibility (92-263 mN), remarkable electrical breakdown strength (39 KV/mm), and volume resistivity that meets the standards for insulation materials (4.92 × 1011 Ω·m). These results demonstrate that the proposed method can produce full-component cellulose insulation films that offer both exceptional flexibility and high-temperature resistance.


Assuntos
Celulose , Polímeros , Temperatura , Temperatura Alta , Fontes de Energia Elétrica
6.
Microorganisms ; 11(8)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37630563

RESUMO

Salt mines feature both autochthonous and allochthonous microbial communities introduced by industrialization. It is important to generate the information on the diversity of the microbial communities present in the salt mines and how they are shaped by the environment representing ecological diversification. Brine from Mahai potash mine (Qianghai, China), an extreme hypersaline environment, is used to produce potash salts for hundreds of millions of people. However, halophiles preserved in this niche during deposition are still unknown. In this study, using high-throughput 16S rRNA gene amplicon sequencing and estimation of physicochemical variables, we examined brine samples collected from locations with the gradient of industrial activity intensity and discrete hydrochemical compositions in the Mahai potash mine. Our findings revealed a highly diverse bacterial community, mainly composed of Pseudomonadota in the hypersaline brines from the industrial area, whereas in the natural brine collected from the upstream Mahai salt lake, most of the 16S rRNA gene reads were assigned to Bacteroidota. Halobacteria and halophilic methanogens dominated archaeal populations. Furthermore, we discovered that in the Mahai potash mining area, bacterial communities tended to respond to anthropogenic influences. In contrast, archaeal diversity and compositions were primarily shaped by the chemical properties of the hypersaline brines. Conspicuously, distinct methanogenic communities were discovered in sets of samples with varying ionic compositions, indicating their strong sensitivity to the brine hydrochemical alterations. Our findings provide the first taxonomic snapshot of microbial communities from the Mahai potash mine and reveal the different responses of bacteria and archaea to environmental variations in this high-altitude aquatic ecosystem.

7.
Front Plant Sci ; 14: 930632, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152177

RESUMO

The adsorption behaviors and transfer pathways of antibiotics in plant-soil system are greatly influenced by the electrochemical properties of both soil particles and plant roots. However, the effects of roots electrochemical properties on antibiotic adsorption are largely unknown. Here, the fresh soybean, maize, and wheat roots with different electrochemical properties were obtained from hydroponic cultivation, and the adsorption processes and mechanisms of doxycycline, tetracycline, sulfadiazine, and norfloxacin on roots under various environmental conditions were investigated. Results showed that the adsorption amount of antibiotics on roots increased with the initial concentration of antibiotics. The coexisting low-molecular weight organic acids and anions inhibited the antibiotic adsorption on roots. The soybean roots performed strong adsorption ability compared with the maize and wheat roots driven by the variations in root electrochemical properties. This study demonstrates the significance of electrochemical interactions between antibiotics and roots in plant-soil system and can contribute to the more accurate risk assessment and effective pollution control of antibiotics.

8.
Food Funct ; 14(4): 2096-2111, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36734470

RESUMO

Non-alcoholic steatohepatitis (NASH) is a chronic liver disease with few therapeutic options available currently. Hemp seed oil extracted from the seeds of hemp (Cannabis sativa L.) has significant nutritional and biological properties due to the unique composition of polyunsaturated fatty acids and various antioxidant compounds. However, little is known about the beneficial effects and molecular mechanisms of hemp seed oil on NASH. Here, the hepatoprotective effects of hemp seed oil on methionine-choline-deficient (MCD) diet-induced NASH in C57BL/6 mice were explored via integration of transcriptomics and metabolomics. Hemp seed oil could improve hepatic steatosis, inflammation and fibrosis in mice with MCD diet-induced NASH. In a nuclear magnetic resonance (NMR)-based metabonomic study, the hepatic and urinary metabolic profiles of mice supplemented with hemp seed oil showed a tendency to recover to healthy controls compared to those of NASH mice. Eight potential biomarkers associated with NASH in both liver tissue and urine were restored to near normal levels by administration of hemp seed oil. The proposed pathways were mainly involved in pyrimidine metabolism, one-carbon metabolism, amino acid metabolism, glycolysis and the tricarboxylic acid (TCA) cycle. Hepatic transcriptomics based on Illumina RNA-Seq sequencing showed that hemp seed oil exerted anti-NASH activities by regulating multiple signaling pathways, e.g., downregulation of the TNF signaling pathway, the IL-17 signaling pathway, the MAPK signaling pathway and the NF-κB signaling pathway, which played a pivotal role in the pathogenesis of NASH. In particular, integration of metabonomic and transcriptomic results suggested that hemp seed oil could attenuate NASH-related liver fibrosis by inhibition of glutaminolysis. These results provided new insights into the hepatoprotective effects of hemp seed oil against MCD diet-induced NASH and hemp seed oil might have potential as an effective therapy for NASH.


Assuntos
Cannabis , Deficiência de Colina , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Cannabis/metabolismo , Metionina/metabolismo , Colina/metabolismo , Transcriptoma , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fígado/metabolismo , Dieta , Racemetionina/metabolismo , Racemetionina/farmacologia , Deficiência de Colina/complicações , Deficiência de Colina/metabolismo , Deficiência de Colina/patologia
9.
J Sci Food Agric ; 103(7): 3531-3539, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36788119

RESUMO

BACKGROUND: Manganese (Mn) is an essential micronutrient for plants, whereas excess Mn(II) in soils leads to its toxicity to crops. Mn(II) is adsorbed onto plant roots from soil solution and then absorbed by plants. Root charge characteristics should affect Mn(II) toxicity to crops and Mn(II) uptake by the roots of the crops. However, the differences in the effects of root surface charge on the uptake of Mn(II) among various crop species are not well understood. RESULTS: The roots of nine legumes and six non-legume poaceae were obtained by hydroponics and the streaming potential method and spectroscopic analysis were used to measure the zeta potentials and functional groups on the roots, respectively. The results indicate that the exchangeable Mn(II) adsorbed by plant roots was significantly positively correlated with the Mn(II) accumulated in plant shoots. Legume roots carried more negative charges and functional groups than non-legume poaceae roots, which was responsible for the larger amounts of exchangeable Mn(II) on legume roots in 2 h and the Mn(II) accumulated in their shoots in 48 h. Coexisting cations, such as Ca2+ and Mg2+ , were most effective in decreasing Mn(II) taken up by roots and accumulated in shoots than K+ and Na+ . This was because Ca2+ and Mg2+ could compete with Mn(II) for active sites on plant roots more strongly compared to K+ and Na+ . CONCLUSION: The root surface charge and functional groups are two important factors influencing Mn(II) uptake by roots and accumulation in plant shoots. © 2023 Society of Chemical Industry.


Assuntos
Fabaceae , Poaceae , Manganês , Transporte Biológico , Produtos Agrícolas , Verduras , Solo , Raízes de Plantas
10.
Clin Chim Acta ; 540: 117227, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36640930

RESUMO

BACKGROUND: Early stratification of disease progression remains one of the major challenges towards the post-coronavirus disease 2019 (COVID-19) era. The clinical relevance of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleic acid load is debated due to the heterogeneity in patients' underlying health conditions. We determined the prognostic value of nasopharyngeal viral load dynamic conversion for COVID-19. METHODS: The cycling threshold (Ct) values of 28,937 nasopharyngeal SARS-CoV-2 RT-PCRs were retrospectively collected from 3,364 COVID-19 patients during hospitalization and coordinated to the onset of disease progression. The ROC curve was utilized to determine the predictive performance of the rate of Ct value alteration between two consecutive RT-PCR runs within 48 h (ΔCt%) for disease transformation across patients with different COVID-19 severity and immune backgrounds, and further validated with 1,860 SARS-CoV-2 RT-PCR results from an independent validation cohort of 262 patients. For the 67 patients with severe COVID-19, Kaplan-Meier analysis was performed to evaluate the difference in survival between patients stratified by the magnitude of Ct value alteration between the late and early stages of hospitalization. RESULTS: The kinetics of viral nucleic acid conversion diversified across COVID-19 patients with different clinical characteristics and disease severities. The ΔCt% is a clinical characteristic- and host immune status-independent indicator for COVID-19 progression prediction (AUC = 0.79, 95 % CI = 0.76 to 0.81), which outperformed the canonical blood test markers, including c-reactive protein (AUC = 0.57, 95 % CI = 0.53 to 0.61), serum amyloid A (AUC = 0.61, 95 % CI = 0.54 to 0.68), lactate dehydrogenase (AUC = 0.61, 95 % CI = 0.56 to 0.67), d-dimer (AUC = 0.56, 95 % CI = 0.46 to 0.66), and lymphocyte count (AUC = 0.62, 95 % CI = 0.58 to 0.66). Patients with persistent high SARS-CoV-2 viral load (an increase of mean Ct value < 50 %) during the first 3 days of hospitalization demonstrated a significantly unfavorable survival (HR = 0.16, 95 % CI = 0.04 to 0.65, P = 2.41 × 10-3). CONCLUSIONS: Viral nucleic acid dynamics of SARS-CoV-2 eliminates the inter-patient variance of basic health conditions and therefore, can serve as a prognostic marker for COVID-19.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Estudos Retrospectivos , Prognóstico , Fatores de Tempo , Carga Viral , Progressão da Doença
11.
Clin Chem Lab Med ; 61(3): 510-520, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36480433

RESUMO

OBJECTIVES: Various comorbidities associated with COVID-19 add up in severity of the disease and obviously prolonged the time for viral clearance. This study investigated a novel ultrasensitive MAGLUMI® SARS-CoV-2 Ag chemiluminescent immunoassay assay (MAG-CLIA) for diagnosis and monitoring the infectivity of COVID-19 patients with comorbid conditions during the pandemic of 2022 Shanghai. METHODS: Analytical performances of the MAG-CLIA were evaluated, including precision, limit of quantitation, linearity and specificity. Nasopharyngeal specimens from 232 hospitalized patients who were SARS-CoV-2 RT-qPCR positive and from 477 healthy donors were included. The longitudinal studies were performed by monitoring antigen concentrations alongside with RT-qPCR results in 14 COVID-19 comorbid participants for up to 22 days. The critical antigen concentration in determining virus infectivity was evaluated at the reference cycle threshold (Ct) of 35. RESULTS: COVID-19 patients were well-identified using an optimal threshold of 0.64 ng/L antigen concentration, with sensitivity and specificity of 95.7% (95% CI: 92.2-97.9%) and 98.3% (95% CI: 96.7-99.3%), respectively, while the Wondfo LFT exhibited those of 34.9% (95% CI: 28.8-41.4%) and 100% (95% CI: 99.23-100%), respectively. The sensitivity of MAG-CLIA remained 91.46% (95% CI: 83.14-95.8%) for the samples with Ct values between 35 and 40. Close dynamic consistence was observed between MAG-CLIA and viral load time series in the longitudinal studies. The critical value of 8.82 ng/L antigen showed adequate sensitivity and specificity in evaluating the infectivity of hospitalized convalescent patients with comorbidities. CONCLUSIONS: The MAG-CLIA SARS-CoV-2 Ag detection is an effective and alternative approach for rapid diagnosis and enables us to evaluate the infectivity of hospitalized convalescent patients with comorbidities.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Centros de Atenção Terciária , Teste para COVID-19 , China , Nasofaringe , Pandemias , Sensibilidade e Especificidade
12.
Chemosphere ; 313: 137570, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36563731

RESUMO

Phyllosilicate minerals are the important components in soils and an important source of activated aluminum (Al) during soil acidification. However, the mechanisms for Al activation in phyllosilicate minerals were not understood well. In this paper, the effect of phyllosilicate surface hydroxyl groups on Al activation during acidification was studied after the minerals were modified with inorganic and organic materials. After modification of kaolinite, montmorillonite, and illite with fulvic acid (FA-), iron oxide (Fe-), Fe combined with FA (Fe-FA-), and siloxane (Si-O-), the interlayer spaces were altered. For instance, when modified with Fe, Fe entered the interlayer spaces of kaolinite and montmorillonite and changed the interlayer spaces of both minerals but did not affect that of illite. Also, the other modification methods had significant effects on the interlayer space of montmorillonite but not on kaolinite and illite. It was observed that all the modification strategies inhibited Al activation during acidification by reducing the number of hydroxyl groups on the mineral surfaces and inhibiting protonation reactions between H+ and hydroxyl groups. Nevertheless, the inhibition effect varies with the type of phyllosilicate mineral. For kaolinite (Kao), the inhibition effect of the different modification methods on Al activation during acidification followed: Fe-FA-Kao > Fe-Kao > Si-O-Kao > FA-Kao. Additionally, for montmorillonite (Mon), the inhibition effect was in the order: Si-O-Mon > Fe-Mon > Fe-FA-Mon > FA-Mon, while for illite, it was: Fe-illite > Si-O-illite ≈ Fe-FA-illite > FA-illite. Thus, the hydroxyl groups on the surfaces and edges of phyllosilicate minerals play an important role in the activation of Al from the mineral structure. Also, the protonation of hydroxyl groups may be the first step during Al activation in these minerals. The results of this study can serve as a reference for the development of new technologies to inhibit soil acidification and Al activation.


Assuntos
Alumínio , Caulim , Caulim/química , Argila , Bentonita/química , Silicatos de Alumínio/química , Adsorção , Minerais/química , Solo , Concentração de Íons de Hidrogênio
13.
Int J Biol Macromol ; 224: 181-187, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36270400

RESUMO

The traditional strategy for isolating cellulose nanomaterials requires various chemicals and a high energy input, while achieving a low product yield owing to lignin removal during pulping and bleaching. Here, we propose a green ethanol pretreatment process with a synergistic effect using ultrasound and FeCl3 to produce lignocellulose nanofibrils (LCNF) with a high yield (over 67 %) from thermomechanical pulp. Notably, a high-aspect-ratio LCNF with uniformly distributed lignin nanoparticles, a high lignin content, and excellent thermostability (Tmax > 330 °C) with a typical cellulose I crystalline structure were successfully obtained. In addition, reduced distillation can easily retrieve the FeCl3 solution and ethanol, reducing reagent waste. In general, FeCl3-catalyzed ethanol pretreatment can serve as a sustainable and environmentally friendly approach for converting sustainable lignocelluloses into high value-added nanomaterials. Moreover, the obtained LCNF can be applied in diverse fields.


Assuntos
Etanol , Lignina , Lignina/química , Etanol/química , Celulose/química , Catálise
14.
Front Microbiol ; 13: 1032851, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386663

RESUMO

Biogenic and thermogenic gas are two major contributors to gas hydrate formation. Methane hydrates from both origins may have critical impacts on the ecological properties of marine sediments. However, research on microbial diversity in thermogenic hydrate-containing sediments is limited. This study examined the prokaryotic diversity and distributions along a sediment core with a vertical distribution of thermogenic gas hydrates with different occurrences obtained from the Qiongdongnan Basin by Illumina sequencing of 16S rRNA genes as well as molecular and geochemical techniques. Here, we show that gas hydrate occurrence has substantial impacts on both microbial diversity and community composition. Compared to the hydrate-free zone, distinct microbiomes with significantly higher abundance and lower diversity were observed within the gas hydrate-containing layers. Gammaproteobacteria and Actinobacterota dominated the bacterial taxa in all collected samples, while archaeal communities shifted sharply along the vertical profile of sediment layers. A notable stratified distribution of anaerobic methanotrophs shaped by both geophysical and geochemical parameters was also determined. In addition, the hydrate-free zone hosted a large number of rare taxa that might perform a fermentative breakdown of proteins in the deep biosphere and probably respond to the hydrate formation.

15.
Front Oncol ; 12: 986828, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172146

RESUMO

Introduction: Esophageal cancer is one of the most aggressive malignancies with limited treatment options, thus resulting in high morbidity and mortality. For patients with advanced esophageal cancer, the median survival is 3-6 months, with the majority requiring intervention for dysphagia. Objective: To compare the relief of dysphagia in patients with incurable esophageal cancer treated with stenting alone or a combination of stenting and palliative radiotherapy. Methods: The protocol of this study was pre-registered on PROSPERO (CRD42022337481). We searched PubMed, Wan Fang, Cochrane Library, Embase, and Web of Science databases. The literature search, quality assessment, and data extraction were conducted by two reviewers independently. The primary endpoints included median overall survival and dysphagia scores. Bleeding events, stent migration, and pain events were secondary outcomes. The meta-analysis results (the primary and secondary outcomes) were pooled by means of a random-effect model or a fixed-effects model. Results: Nine studies with a total of 851 patients were included in this meta-analysis, consisting of 412 patients in the stenting alone group and 439 patients in the palliative radiotherapy after esophageal cancer stenting (ROCS) group. The ROCS group could significantly improve dysphagia scores (SMD: -0.77; 95% CI: -1.02 to -0.51) and median overall survival (SMD: 1.70; 95% CI: 0.67-2.72). Moreover, there were no significant differences between the two groups in bleeding events, pain events, and stent migration. Conclusion: Patients with dysphagia in advanced esophageal cancer may benefit further from ROCS in median overall survival and dysphagia scores. However, there was no significant advantage in improving bleeding events, pain events, and stent migration. Therefore, it is urgent to find a better therapy to improve adverse events in the future. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42022337481.

16.
Molecules ; 27(15)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35956899

RESUMO

In this work, a molecular dynamics simulation was conducted to study the microscopic mechanism of how nitrogen bubbles affect the formation of THF hydrates at the molecular level. The results obtained reveal that the nitrogen bubble can promote the formation of THF hydrates. In the system with a nitrogen bubble, more THF-filled cages were generated, and the crystal structure was more orderly. The promotion of nitrogen bubbles on hydrate crystallization comes from the dissolution of nitrogen molecules. Some of dissolved nitrogen molecules can be enclosed in small hydrate cages near the nitrogen bubble, which can serve as stable sites for hydrate crystal growth, resulting in the fact that THF-filled cages connected with N2-filled cages are much more stable and have a long lifetime. The results in this work can help to understand the promotion effect of micro- and nano-air bubbles on the crystallization of THF hydrates.

17.
Int J Biol Macromol ; 217: 193-202, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-35798084

RESUMO

Cellulose, as a renewable biopolymer, was acknowledged as a promising alternative for petroleum polymer. However, the poor thermoplasticity of cellulose caused a limitation in its full development. Herein, a solvent-free and simple strategy was proposed for the preparation of thermoplastic bio-materials from microcrystalline cellulose (MCC). Kraft lignin (KL) was employed as a plasticizer in this work. It was demonstrated that MCC-based materials with great thermoplasticity and mechanical properties could be successfully prepared by reactive extrusion. The obtained MCC-based material ML8G (with 50 wt% KL adding) possessed great thermostability and thermoplastic properties with an obvious glass transition temperature (Tg) at 106 °C. In addition, the bending strength, flexural modulus and storage modulus of the MCC-based material were improved to 20.44 MPa, 3139.47 MPa and 5.81 GPa respectively. Furthermore, the obtained MCC-based material exhibited good water stability and biodegradability. The comprehensive results confirmed the feasibility of MCC-based materials plasticized with KL through reactive extrusion. Overall, this work was a promising development in the field of bio-plastic utilization of natural products from a green source.


Assuntos
Celulose , Polímeros , Celulose/química , Polímeros/química , Solventes , Temperatura
18.
Molecules ; 27(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35458729

RESUMO

Rock-Eval pyrolysis and the biomarker composition of organic matter were systematically studied in hydrate-bearing sediments from the Shenhu area, South China Sea. The n-alkane distribution patterns revealed that the organic matter in the sediments appeared to originate from mixed sources of marine autochthonous input, terrestrial higher plants, and ancient reworked organic matter. The low total organic carbon contents (average < 0.5%) and the low hydrogen index (HI, <80 mg HC/g TOC) suggested the poor hydrocarbon-generation potential of the deposited organic matter at a surrounding temperature of <20 °C in unconsolidated sediments. The abnormally high production index and the fossil-originated unresolved complex mixture (UCM) accompanied by sterane and hopane of high maturity indicated the contribution of deep hydrocarbon reservoirs. Preliminary oil-to-source correlation for the extracts implied that the allochthonous hydrocarbons in the W01B and W02B sediments might have originated from the terrestrial source rocks of mature Enping and Wenchang formations, while those of W03B seem to be derived from more reduced and immature marine source rocks such as the Zhuhai formation. The results of the organic extracts supported the previous identification of source rocks based on the isotopic composition of C2+ hydrate-bound gases. The biomarker of methanogens, squalane, was recognized in the sediments of this study, possibly suggesting the generation of secondary microbial gases which are coupled with the biodegradation of the deep allochthonous hydrocarbons.


Assuntos
Sedimentos Geológicos , Poluentes Químicos da Água , Biomarcadores , China , Monitoramento Ambiental/métodos , Gases , Sedimentos Geológicos/química , Hidrocarbonetos/análise , Poluentes Químicos da Água/análise
19.
Chemosphere ; 301: 134674, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35461893

RESUMO

To explore the effects of the increases in pH and pH buffering capacity (pHBC) induced by crop residue biochars on the changes in soil available Cd content, six acidic paddy soils developed from different parents were amended with seeded sunflower plate biochar (SSPBC), peanut straw biochar (PSBC) and corn straw biochar (CSBC). The pH, pHBC, and available Cd of the soils were measured after laboratory incubation. The results showed that the incorporation of crop residue biochars led to the increases in soil pH and pHBC, but a decrease in soil available Cd content. The decreasing order of available Cd content was SSPBC > PSBC > CSBC and was consistent with the changes in soil pH induced by the biochars. During submerging and draining, soil pH increased first and then declined, however the content of available Cd decreased first and then increased significantly. Soil pH in the treatments with biochars showed little change during draining, which was different from the control without the biochars added. This was attributed to the enhancing effect of the biochars on soil pHBC. Also, there was a significant negative correlation between the change in available Cd content and soil pHBC during submerging/draining alternation and suggested that higher pHBC corresponded to smaller soil available Cd content. Consequently, the amount of Cd absorbed by rice was reduced, thereby reducing the potential risk of soil Cd to humans. These results can provide useful references for the remediation of Cd-contaminated paddy soils.


Assuntos
Oryza , Poluentes do Solo , Ácidos/química , Arachis , Cádmio/análise , Carvão Vegetal/química , Humanos , Concentração de Íons de Hidrogênio , Oryza/química , Solo/química , Poluentes do Solo/análise , Zea mays
20.
Int J Biol Macromol ; 207: 23-30, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35248603

RESUMO

The poor dispersibility and re-dispersibility of cellulose nanofibrils (CNFs) in various solvents and polymers have been recognized as the key factors limiting their potential applications. TEMPO oxidation, as the most common surface modification, can greatly improve the dispersion and re-dispersion of CNFs. However, the diameter of TEMPO-oxidized cellulose nanofibers (TOCNFs) has not been regulated in most researches, which was an important factor determining the dispersion and re-dispersion of TOCNFs. Herein, this work explored the effect of carboxyl groups on dispersion and re-dispersion of TOCNFs with uniform diameter in various solvents. Notably, fractal dimension was innovatively introduced to characterize the distribution of TOCNFs diameter. The fractal dimension and statistic diameter of TCONFs with different carboxyl group contents are ~1.56 and ~22 nm, demonstrating that the diameter of TOCNFs has been regulated in the same range. When the carboxyl group content is up to 1.58 mmol/g, the dispersion and re-dispersion of TOCNFs suspension in water and different organic solvents are the most uniform and stable. In a word, this work explores the dispersion and re-dispersion of TOCNFs with the uniform diameter and different carboxyl group contents, which can provide the theoretical guidance for various potential applications of nanofibrils in polymer matrix composites.


Assuntos
Celulose Oxidada , Nanofibras , Celulose , Polímeros , Solventes , Suspensões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA