Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(15): 19359-19368, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38568140

RESUMO

Wearable sensors utilize changes in color as a response to physiological stimuli, making them easily recognizable by the naked eye. These colorimetric wearable sensors offer benefits such as easy readability, rapid responsiveness, cost-effectiveness, and straightforward manufacturing techniques. However, their applications in detecting volatile organic compounds (VOCs) in situ have been limited due to the low concentration of complex VOCs and complicated external interferences. Aiming to address these challenges, we introduced readable and wearable colorimetric sensing arrays with a microchannel structure and highly gas-sensitive materials for in situ detection of complex VOCs. The highly gas-sensitive materials were designed by loading gas-sensitive dyes into the porous metal-organic frameworks and further depositing the composites on the electrospun nanofiber membrane. The colorimetric sensor arrays were fabricated using various gas-sensitive composites, including eight dye/MOF composites that respond to various VOCs and two Pd2+/dye/MOF composites that respond to ethylene. This enables the specific recognition of multiple characteristic VOCs. A microfluidic channel made of polydimethylsiloxane (PDMS) was integrated with different colorimetric elements to create a wearable sensor array. It was attached to the surface of fruits to collect and monitor VOCs using the DenseNet classification method. As a proof of concept, we demonstrated the feasibility of the wearable sensing system in monitoring the ripening process of fruits by continuously measuring the VOC emissions from the skin of the fruit.


Assuntos
Compostos Orgânicos Voláteis , Dispositivos Eletrônicos Vestíveis , Colorimetria/métodos , Compreensão , Pele , Corantes
2.
J Nutr Biochem ; 34: 126-35, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27295130

RESUMO

The present study was performed to evaluate the insulin-like effects of zinc in normal L6 myotubes as well as its ability to alleviate insulin resistance. Glucose consumption was measured in both normal and insulin-resistant L6 myotubes. Western blotting and immunofluorescence revealed that zinc exhibited insulin-like glucose transporting effects by activating key markers that are involved in the insulin signaling cascade (including Akt, GLUT4 and GSK3ß), and downregulating members of the insulin signaling feedback cascade such as mammalian target of rapamycin (mTOR) and ribosomal protein S6 kinase (S6K1). In normal L6 myotubes, zinc enhanced glucose consumption via a mechanism that might involve the activation of Akt phosphorylation, glucose transporter 4 (GLUT4) translocation and GSK3ß phosphorylation. In contrast, zinc exerted insulin-mimetic effects in insulin-resistant L6 myotubes by upregulating Akt phosphorylation, GLUT4 translocation and GSK3ß phosphorylation, and downregulating the expression of mTOR and S6K1. In conclusion, zinc might enhance glucose consumption by modulating insulin signaling pathways including Akt-GLUT4, GSK3ß, mTOR and S6K1.


Assuntos
Transportador de Glucose Tipo 4/agonistas , Glicogênio Sintase Quinase 3 beta/metabolismo , Resistência à Insulina , Fibras Musculares Esqueléticas/metabolismo , Proteínas Proto-Oncogênicas c-akt/agonistas , Transdução de Sinais , Zinco/metabolismo , Absorção Fisiológica , Animais , Biomarcadores/metabolismo , Linhagem Celular , Suplementos Nutricionais , Ativação Enzimática , Glucose/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Glicogênio Sintase Quinase 3 beta/química , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/enzimologia , Fosforilação , Processamento de Proteína Pós-Traducional , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Proteínas Quinases S6 Ribossômicas/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA