RESUMO
In isolated nonlinear optical waveguide arrays, simultaneous conservation of longitudinal momentum flow ("internal energy") and optical power ("particle number") of the optical modes enables study of coupled thermal and particle transport in the negative temperature regime. Based on exact numerical simulation and rationale from Landauer formalism, we predict generic photonic version of the Wiedemann-Franz law in such systems, with the Lorenz number Lâ|T|^{-2}. This is rooted in the spectral decoupling of thermal and particle current, and their different temperature dependence. In addition, in asymmetric junctions, relaxation of the system toward equilibrium shows apparent asymmetry for positive and negative biases, indicating rectification behavior. This Letter illustrates the possibility of simulate nonequilibrium transport processes using optical networks, in parameter regimes difficult to reach in natural condensed matter or atomic gas systems. It also provides new insights in manipulating power and momentum flow of optical waves in artificial waveguide arrays.
RESUMO
Electrons are the carriers of heat and electricity in materials and exhibit abundant transport phenomena such as ballistic, diffusive, and hydrodynamic behaviors in systems with different sizes. The electron Boltzmann transport equation (eBTE) is a reliable model for describing electron transport, but it is a challenging problem to efficiently obtain the numerical solutions of the eBTE within one unified scheme involving ballistic, hydrodynamics, and/or diffusive regimes. In this work, a discrete unified gas kinetic scheme (DUGKS) in the finite-volume framework is developed based on the eBTE with the Callaway relaxation model for electron transport. By reconstructing the distribution function at the cell interface, the processes of electron drift and scattering are coupled together within a single time step. Numerical tests demonstrate that the DUGKS can be adaptively applied to multiscale electron transport, across different regimes.
RESUMO
Chirality is an important aspect of nature, and numerous macroscopic methods have been developed to understand and control chirality. For the chiral tertiary amines, their flexible flipping process makes it possible to achieve high chiral controllability without bond formation and breaking. Here, we present a type of stable chiral single-molecule devices formed by tertiary amines, using graphene-molecule-graphene single-molecule junctions. These single-molecule devices allow real-time, in situ, and long-time measurements of the flipping process of an individual chiral nitrogen center with high temporal resolution. Temperature- and bias voltage-dependent experiments, along with theoretical investigations, revealed diverse chiral intermediates, indicating the regulation of the flipping dynamics by energy-related factors. Angle-dependent measurements further demonstrated efficient enrichment of chiral states using linearly polarized light by a symmetry-related factor. This approach offers a reliable means for understanding the chirality's origin, elucidating microscopic chirality regulation mechanisms, and aiding in the design of effective drugs.
RESUMO
Chirality, a fundamental attribute of nature, significantly influences a wide range of phenomena related to physical properties, chemical reactions, biological pharmacology, and so on. As a pivotal aspect of chirality research, chirality recognition contributes to the synthesis of complex chiral products from simple chiral compounds and exhibits intricate interplay between chiral materials. However, macroscopic detection technologies cannot unveil the dynamic process and intrinsic mechanisms of single-molecule chirality recognition. Herein, we present a single-molecule detection platform based on graphene-molecule-graphene single-molecule junctions to measure the chirality recognition involving interactions between amines and chiral alcohols. This approach leads to the realization of in situ and real-time direct observation of chirality recognition at the single-molecule level, demonstrating that chiral alcohols exhibit compelling potential to induce the formation of the corresponding chiral configuration of molecules. The amalgamation of theoretical analyses with experimental findings reveals a synergistic action between electrostatic interactions and steric hindrance effects in the chirality recognition process, thus substantiating the microscopic mechanism governing the chiral structure-activity relationship. These studies open up a pathway for exploring novel chiral phenomena from the fundamental limits of chemistry, such as chiral origin and chiral amplification, and offer important insights into the precise synthesis of chiral materials.
RESUMO
Thermal conductivity is a critical material property in numerous applications, such as those related to thermoelectric devices and heat dissipation. Effectively modulating thermal conductivity has become a great concern in the field of heat conduction. Here, a quantum modulation strategy is proposed to modulate the thermal conductivity/heat flux by exciting targeted phonons. It shows that the thermal conductivity of graphene can be tailored in the range of 1559 W m-1 K-1 (decreased to 49%) to 4093 W m-1 K-1 (increased to 128%), compared with the intrinsic value of 3189 W m-1 K-1. The effects are also observed for graphene nanoribbons and bulk silicon. The results are obtained through both density functional theory calculations and molecular dynamics simulations. This novel modulation strategy may pave the way for quantum heat conduction.
RESUMO
Scanning tunneling microscope (STM)-induced luminescence provides an ideal platform for electrical generation and the atomic-scale manipulation of nonclassical states of light. However, despite its extreme importance in quantum technologies, squeezed light emission with reduced quantum fluctuations has hitherto not been demonstrated in such a platform. Here, we theoretically predict that the emitted light from the plasmon mode can be squeezed in an STM single molecular junction subject to an external laser drive. Going beyond the traditional paradigm that generates squeezing with the quadratic interaction of photons, our prediction explores the molecular coherence involved in an anharmonic energy spectrum of a coupled plasmon-molecule-exciton system. Furthermore, we show that, by selectively exciting the energy ladder, the squeezed plasmon can show either sub- or super-Poissonian statistical properties. We also demonstrate that, following the same principle, the molecular excitonic mode can be squeezed simultaneously.
RESUMO
Maintaining stability of single-molecular junctions (SMJs) in the presence of current flow is a prerequisite for their potential device applications. However, theoretical understanding of nonequilibrium heat transport in current-carrying SMJs is a challenging problem due to the different kinds of nonlinear interactions involved, including electron-vibration and anharmonic vibrational coupling. Here, we overcome this challenge by accelerating Langevin-type current-induced molecular dynamics using machine-learning potential derived from density functional theory. We show that SMJs with graphene electrodes generate an order of magnitude less heating than those with gold electrodes. This is rooted in the better phonon spectral overlap of graphene with molecular vibrations, rendering harmonic phonon heat transport being dominant. In contrast, in a spectrally mismatched junction with gold electrodes, anharmonic coupling becomes important to transport heat away from the molecule to surrounding electrodes. Our work paves the way for studying current-induced heat transport and energy redistribution in realistic SMJs.
RESUMO
Intermolecular charge transport plays a vital role in the fields of electronics, as well as biochemical systems. Here, we design supramolecular dimer junctions and investigate the effects of charge state and energy level alignment on charge transport under nanoconfinement. Incoherent tunneling caused by thermally-induced vibrations is enhanced in positively charged systems. The transition between coherent and incoherent tunneling is associated with specific molecular vibration modes. Positively charged systems with smaller torsional barriers and vibrational frequencies result in lower transition temperatures. Multiple thermal effects have a great impact on the conductance in the off-resonant tunneling, while thermally-induced vibron-assisted tunneling contributes more to the transport in the resonant tunneling. These investigations offer a deep mechanism understanding of intermolecular charge transport and facilitate the development of practical functional molecular devices.
Assuntos
Eletrônica , Vibração , Transporte de ElétronsRESUMO
Investigation of intermolecular electron spin interaction is of fundamental importance in both science and technology. Here, radical pairs of all-trans retinoic acid molecules on Au(111) are created using an ultralow temperature scanning tunneling microscope. Antiferromagnetic coupling between two radicals is identified by magnetic-field-dependent spectroscopy. The measured exchange energies are from 0.1 to 1.0 meV. The biradical spin coupling is mediated through OâHâ¯O hydrogen bonds, as elucidated from analysis combining density functional theory calculation and a modern version of valence bond theory.
Assuntos
Elétrons , Ligação de HidrogênioRESUMO
Paeoniflorin-6'-O-benzene sulfonate (CP-25) has therapeutic potential for the treatment of hepatocellular carcinoma (HCC). 5-Fluorouracil (5-Fu) has been a conventional chemotherapeutic agent for HCC. Unfortunately, the nonspecific cytotoxicity and multidrug resistance caused by long-term use limited the clinical efficacy of 5-Fu. This study was aimed to investigate whether the combination of CP-25 and 5-Fu could generate synergistic effect in inhibiting HCC. The experiments on the diethylnitrosamine (DEN) -induced mice showed that compared with applying single drugs, the combination of CP-25 and 5-Fu presented stronger inhibition in tumor nodule and volume. Meanwhile, CP-25 and 5-Fu activated the intrinsic mitochondrial apoptosis pathway induced by P53, inhibited anti-apoptotic B-cell lymphoma (Bcl-2), induced the pro-apoptotic Bcl-2-associated X protein (Bax), Cytochrome-C and caspases. In addition, the synergistic effect was also validated in Bel-7402 and HepG-2 cells in vitro. This research not only provides a novel and effective combination strategy for the therapy of HCC but also provides an experimental basis for the development of CP-25 and 5-Fu compound preparation.
RESUMO
OBJECTIVE: To investigate the risk factors of medication nonadherence in patients with type 2 diabetes mellitus (T2DM) and to establish a risk nomogram model. METHODS: This retrospective study enrolled patients with T2DM, which were divided into two groups based on their scores on the Morisky Medication Adherence scale. Univariate and multivariate logistic regression analyses were used to screen for independent risk factors for medication nonadherence. A risk model was then established using a nomogram. The accuracy of the prediction model was evaluated using centrality measurement index and receiver operating characteristic curves. Internal verification was evaluated using bootstrapping validation. RESULTS: A total of 338 patients with T2DM who included in the analysis. Logistic regression analysis showed that the educational level, monthly per capita income, drug affordability, the number of drugs used, daily doses of drugs and the time spent taking medicine were all independent risk factors for medication nonadherence. Based on these six risk factors, a nomogram model was established to predict the risk of medication nonadherence, which was shown to be very reliable. Bootstrapping validated the nonadherence nomogram model for patients with T2DM. CONCLUSIONS: This nomogram model could be used to evaluate the risks of drug nonadherence in patients with T2DM.
Assuntos
Diabetes Mellitus Tipo 2 , Nomogramas , China , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Adesão à Medicação , Estudos RetrospectivosRESUMO
The Mott state in 1T-TaS2 is predicted to host quantum spin liquids (QSLs). However, its insulating mechanism is controversial due to complications from interlayer coupling. Here, we study the charge transfer state in monolayer 1T-NbSe2, an electronic analogue to TaS2 exempt from interlayer coupling, using spectroscopic imaging scanning tunneling microscopy and first-principles calculations. Monolayer NbSe2 surprisingly displays two types of star of David (SD) motifs with different charge transfer gap sizes, which are interconvertible via temperature variation. In addition, bilayer 1T-NbSe2 shows a Mott collapse by interlayer coupling. Our calculation unveils that the two types of SDs possess distinct structural distortions, altering the effective Coulomb energies of the central Nb orbital. Our calculation suggests that the charge transfer gap, the same parameter for determining the QSL regime, is tunable with strain. This finding offers a general strategy for manipulating the charge transfer state in related systems, which may be tuned into the potential QSL regime.
RESUMO
INTRODUCTION: Hepatocellular carcinoma (HCC) accounts for more than 90% of liver cancers and is ranked as the fifth most common malignancy. Androgen receptor (AR) may promote the progression of HCC at an early stage of the disease. However, this study identified miR-135b-5p as an AR upstream regulator can suppress AR protein expression and inhibit HCC proliferation, consistent with the idea that AR expression is negatively correlated with HCC progression. METHODS: The target microRNAs were predicted using online databases (TargetScan, miRDB, and MicroCosm Targets). Cell proliferation ability was measured by MTT and colony formation assay. Western blot was performed to analyze the expression levels of AR, HIF-2α, c-Myc, and p27, which are related to HCC proliferation. Chromatin immunoprecipitation (ChIP) assay and luciferase reporter assay were carried out to investigate the mechanism by which miR-135b-5p decreases AR expression. RESULTS: miR-135b-5p suppresses HCC cell proliferation and AR expression. Downregulation of AR expression by miR-135b-5p may in turn transcriptionally modulate HIF-2α expression via direct binding of AR to the androgen response element (ARE) in the HIF-2α promoter. Further dissection of the mechanism revealed that AR-modulated HIF-2α could suppress c-Myc expression resulting in increased p27 expression that likely contributes to the suppression of proliferation in HCC cells. CONCLUSION: miR-135b-5p suppresses HCC cell proliferation via targeting AR-modulated HIF-2α/c-Myc/p27 signals, which may help to develop more effective therapies to prevent HCC progression.
RESUMO
We study vibrational statistics in current-carrying model molecular junctions using a master equation approach. In particular, we concentrate on the validity of using an effective temperature T_{eff} to characterize the nonequilibrium steady state of a vibrational mode. We identify cases in which a single T_{eff} cannot fully describe one vibrational state. In such cases, the probability distribution among different vibrational states does not follow the Boltzmann type. Consequently, the actual entropy (free energy) of the vibrational mode is lower (higher) than the corresponding thermal value given by T_{eff}, indicating extra work can be extracted from these states. Our results will be useful for the study of a nonthermal vibrational state in the thermodynamics of nanoscale systems, and its usage in nanoscale heat engines.
RESUMO
The photon blockade induced by optical nonlinearity has been widely used to generate single-photon emission under optical driving in quantum optics. However, the same approach is difficult to achieve in electrically driven molecular junctions. Here we propose a scheme for tuning photon statistics via Fano-like interference effect in a system consisting of two molecules within one optical cavity. Under electrical pumping, a transition from photon bunching to antibunching takes place as a manifestation of the Fano-like interference. This effect persists even in the presence of the dipole-dipole interaction between molecules based on the parameters extracted from the experiments. Our proposal can be realized in current-carrying scanning tunneling microscope junctions.
RESUMO
We study hydrodynamic phonon heat transport in two-dimensional (2D) materials. Starting from the Peierls-Boltzmann equation with the Callaway model approximation, we derive a 2D Guyer-Krumhansl-like equation describing hydrodynamic phonon transport, taking into account the quadratic dispersion of flexural phonons. In addition to Poiseuille flow, second sound propagation, the equation predicts heat current vortices and negative non-local thermal conductance in 2D materials, which are common in classical fluids but have not yet been considered in phonon transport. Our results also illustrate the universal transport behaviors of hydrodynamics, independent of the type of quasi-particles and their microscopic interactions.
RESUMO
The anharmonicity of phonons in a solid is ultimately rooted in the chemical bonding. However, the direct connection between phonon anharmoncity and chemical bonding is difficult to make experimentally or theoretically, mainly due to their complicated lattice structures. Here, with the help of first-principles calculations, we show that the intrinsically low lattice thermal conductivity (κ) of Bi2O2X (X = S, Se, Te) shows a strong connection to the electrostatic inter-layer coupling. We explain our results by the strong anharmonic chemical bonding between Bi and chalcogen atoms. Additionally, due to the strong anharmonicity, a large portion of phonon modes has a mean free path shorter than the average atomic distance. We employ a recently proposed two-channel model to take into account their contribution to κ.
RESUMO
van der Waals (vdW) heterostructures, stacking different two-dimensional materials, have opened up unprecedented opportunities to explore new physics and device concepts. Especially interesting are recently discovered two-dimensional magnetic vdW materials, providing new paradigms for spintronic applications. Here, using density functional theory (DFT) calculations, we investigate the spin-dependent electronic transport across vdW magnetic tunnel junctions (MTJs) composed of Fe3GeTe2 ferromagnetic electrodes and a graphene or hexagonal boron nitride (h-BN) spacer layer. For both types of junctions, we find that the junction resistance changes by thousands of percent when the magnetization of the electrodes is switched from parallel to antiparallel. Such a giant tunneling magnetoresistance (TMR) effect is driven by dissimilar electronic structure of the two spin-conducting channels in Fe3GeTe2, resulting in a mismatch between the incoming and outgoing Bloch states in the electrodes and thus suppressed transmission for an antiparallel-aligned MTJ. The vdW bonding between electrodes and a spacer layer makes this result virtually independent of the type of the spacer layer, making the predicted giant TMR effect robust with respect to strain, interface distance, and other parameters, which may vary in the experiment. We hope that our results will further stimulate experimental studies of vdW MTJs and pave the way for their applications in spintronics.
RESUMO
We study the decay of gap plasmons localized between a scanning tunneling microscope tip and metal substrate, excited by inelastic tunneling electrons. The overall excited energy from the tunneling electrons is divided into two categories in the form of resistive dissipation and electromagnetic radiation, which together can further be separated into four diffierent channels, including SPP channel on the tip, SPP channel on the substrate, air mode channel and direct quenching channel. In this work, we study the enhancement factor, i.e. Purcell factor, of the STM tunnel junctions, which are mediated by the nearby metallic structures. We find that the gap plasmon mode is most likely to couple to the SPP channel on the tip, rather than the SPP channel on the substrate or the air mode. The direct quenching in the apex of tip also takes a considerable portion especially in high frequency region, the enhancement factor of direct quenching in the tip is much higher than the direct quenching in the substrate. We adopt four tips with diffierent apex radii, i.e., 1 nm, 5 nm, 10 nm, 20 nm. When the apex size is small, the frequency dependent enhancement factor from the SPPs contribution has a pronounced peak at 1.55 eV, however, as the radius increases, the peak of enhancement factor in the high frequency region appears, the 1.55 eV peak becomes less dominated. This phenomenon can be attributed to the change of tip shape, in the form of mode coupling. Our results also show a relationship between the direct quenching in the substrate and in the tip. With the larger radius of apex, the ratio of these two part of energy approaches 1, which indicate that the energy distribution of direct quenching is sensitive to the shape of the tip-substrate gap.
RESUMO
The coupling between molecular exciton and gap plasmons plays a key role in single molecular electroluminescence induced by a scanning tunneling microscope (STM). But it has been difficult to clarify the complex experimental phenomena. By employing the nonequilibrium Green's function method, we propose a general theoretical model to understand the light emission spectrum of single molecule and gap plasmons from an energy transport point of view. The coherent interaction between gap plasmons and molecular exciton leads to a prominent Fano resonance in the emission spectrum. We analyze the dependence of the Fano line shape on the system parameters, based on which we provide a unified account of several recent experimental observations. Moreover, we highlight the effect of the tip-molecule electronic coupling on the spectrum.