Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 661: 709-719, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38320407

RESUMO

The exploration of bifunctional catalyst with economic, durable, and efficient performance plays a crucial role to boost both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in overall water splitting. Herein, we report a feasible strategy to design effective heterostructure between CoP and Ti3C2Tx MXene (denoted as CoP/Ti3C2Tx). This approach allows for the growth of CoP nanoparticles with uniform size of 5 nm on the Ti3C2Tx MXene, further enhancing the water electrolysis efficiency. The CoP/Ti3C2Tx bifunctional catalyst demonstrates an exceptional HER activity with a satisfactory overpotential of 103 mV at 10 mA cm-2, and also can drive 10 mA cm-2 for OER with the overpotential of 312 mV in 1.0 M KOH. Moreover, the CoP/Ti3C2Tx-based electrolyzer exhibits high electrochemical stability for 24 h with a low required voltage of 1.66 V at 10 mA cm-2. The density functional theory (DFT) calculations reveal that the introduction of Ti3C2Tx MXene significantly adjusts d-band center towards Fermi level and expand total density of states, resulting in great electrical conductivity, enhanced water adsorption, and activation. This study provides an available mode for effective design and construction of non-noble-metal-based dual-functional catalyst toward practical energy conversion.

2.
Sci Total Environ ; 904: 167339, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37748601

RESUMO

The low carbon mass loading along with serious imbalance between the carbon mass loading and the electrode performance greatly hinders practical applications of capacitive deionization (CDI). Traditional thick bulk-type (BT) carbon electrodes often suffer from extremely limited active sites, thereby being vital to explore a basic strategy to unlock the performance. Herein, 3D-printed thick carbon electrodes were utilized for CDI desalination for the first time. The experimental outcomes revealed that BT electrodes existed a serious salt adsorption capacity (SAC) drop under variable mass loading of 3-30 mg/cm2. In contrary, 3D-printed river-type (RT) electrodes acquired a superior SAC of 10.67 mg/g and achieved 54.1 % SAC rise compared with that of BT electrodes (500 mg/L; 1.0 V; 30 mg/cm2). Meanwhile, RT electrodes took only 12 min to reach the equilibrium SAC of BT electrodes, being 44 min faster. Further, RT electrodes with diverse mass loading of 30-45 mg/cm2 were investigated, and it still kept 7.13 mg/g SAC under ultrahigh mass loading of 45 mg/cm2. This strategy has been successfully extended and carbons with proper micro-meso pore distribution, high specific capacitances and low resistance may be a better selection. Besides, the impact of electrode channel structure on the desalting performance was investigated, and the influence mechanism was revealed via COMSOL simulation. Overall, this work demonstrates the splendid feasibility of utilizing 3D-printed thick carbon electrodes for possible practical application-level CDI desalination.

3.
J Colloid Interface Sci ; 650(Pt B): 1152-1163, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37473475

RESUMO

Developing advanced adsorbents for removing the alarming level of pharmaceuticals active compounds (PhACs) pollution is an urgent task for environmental treatment. Herein, a novel acid-treated carbon nanofiber/polypyrrole/MIL-100-Fe (ACNF/PPy/MIL-100-Fe) with stable 3D-supporting skeleton and hierarchical porous structure had been fabricated to erasure ceftriaxone (CEF) and indomethacin (IDM) from aqueous solution. ACNF as scaffold achieved the highly uniform growth of MIL-100-Fe and PPy. Viewing the large BET surface area (SBET, 999.7 m2/g), highly exposed accessible active sites and copious functional groups, ACNF/PPy/MIL-100-Fe separately showed an excellent adsorption capacity for CEF (294.7 mg/g) and IDM (751.8 mg/g), outstripping the most previously reported adsorbents. Moreover, ACNF/PPy/MIL-100-Fe reached rapid adsorption kinetics and standout reusability property. Further, the redesigned easy-to-recyclable ACF/PPy/MIL-100-Fe inspired by the electrode formation craft achieved prominent adsorption capacity and good reusability property. The adsorption mechanism was evaluated via Fourier transformed infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The outcomes revealed that the splendid adsorption capability mainly depended on the electrostatic interactions, hydrogen bonding and π-π interactions. This work sheds light on one facile practical strategy to exploit advanced materials in water environmental remediation.

4.
J Colloid Interface Sci ; 650(Pt A): 222-235, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37402328

RESUMO

The tunable porous structure of metal organic frameworks (MOFs) plays a crucial role in determining their adsorption performance. In this study, we developed and employed a strategy involving monocarboxylic acid assistance to synthesize a series of zirconium-based MOFs (UiO-66-F4) for the removal of aqueous phthalic acid esters (PAEs). The adsorption mechanisms were investigated by combining batch experiments, characterization and theoretical simulation. By adjusting the affecting factors (i.e., initial concentration, pH values, temperature, contact time and interfering substance), the adsorption behavior was confirmed as a spontaneous and exothermic chemisorption process. The Langmuir model provided a good fit, and the maximum expected adsorption capacity of di-n-butyl phthalate (DnBP) on UiO-66-F4(PA) was calculated to be 530.42 mg·g-1. Besides, through carrying out the molecular dynamics (MD) simulation, the multistage adsorption process in the form of DnBP clusters was revealed on a microcosmic scale. The independent gradient model (IGM) method showed the types of weak interactions of inter-fragments or between DnBP and UiO-66-F4. Furthermore, the synthesized UiO-66-F4 displayed excellent removal efficiency (>96 % after 5 cycles), satisfactory chemical stability and reusability in the regeneration process. Hence, the modulated UiO-66-F4 will be regarded as a promising adsorbent for PAEs separation. This work will provide referential significance in tunable MOFs development and actual applications of PAEs removal.

5.
Small ; 19(22): e2300387, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36866519

RESUMO

The direct electrooxidation reaction of ammonia borane (ABOR) as the anodic reaction of direct ammonia borane fuel cells (DABFCs) is greatly dependent on the properties of electrocatalysts. Both the active sites and charge/mass transfer characteristics are the key to promoting the processes of kinetics and thermodynamics, which can further improve the electrocatalytic activity. Hence, the catalyst double-heterostructured Ni2 P/Ni2 P2 O7 /Ni12 P5 (d-NPO/NP) with the optimistic redistribution of electrons and active sites is prepared for the first time. The d-NPO/NP-750 catalyst obtained after pyrolysis at 750 °C shows the outstanding electrocatalytic activity toward ABOR with an onset potential of -0.329 V vs RHE which is better than all the published catalysts. The density functional theory (DFT) computations illustrate that the Ni2 P2 O7 /Ni2 P acts as the activity enhancement heterostructure with a high d-band center (-1.60 eV) and the low activation energy barrier, while the Ni2 P2 O7 /Ni12 P5 acts as the conductivity enhancement heterostructure with the highest density of valence electrons.

6.
Talanta ; 248: 123617, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35687949

RESUMO

The wide clinical application of d-penicillamine (D-PA) makes it inevitably accumulates in the environment, seriously threatening human health and the ecological environment. To better supervisory control D-PA, a highly sensitive and reliable photoelectrochemical (PEC) sensor based on gold nanoparticles (Au NPs) loaded on graphitic carbon nitride sheet and hexagonal NH2-UiO-66 composite (g-C3N4/Au/NH2-UiO-66) was synthesized. Tactfully using the strong bonding between D-PA and Au NPs and the effective carrier separation of Z-scheme heterojunction, the designed g-C3N4/Au/NH2-UiO-66 PEC sensor without an extra recognition unit exhibited a selective and sensitive photocurrent to D-PA. With the aid of UV diffuse reflectance spectra (UV-DRs), electron paramagnetic resonance (EPR) characterization, and free radical capture experiments, the electron transfer path of the PEC sensing system was deduced. The proposed g-C3N4/Au/NH2-UiO-66 PEC-based sensor achieved a low detection limit of 0.0046 µM (S/N = 3) with a wide linear response ranging from 10 nM to 400 µM. In addition, its good stability and selectivity also laid a good foundation for practical applications.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Técnicas Eletroquímicas , Ouro/química , Humanos , Nanopartículas Metálicas/química , Estruturas Metalorgânicas , Penicilamina , Ácidos Ftálicos
7.
Sci Total Environ ; 752: 142282, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33207523

RESUMO

Herein, we report a method to synthesize nitrogen self-doped hierarchical porous carbon materials derived from chitosan. This method uses potassium hydroxide (KOH) activation and rapid-freezing technology. The catalyst (CA-900Q 1-1) obtained after rapid-freezing and KOH activation treatment show excellent persulfate activation ability. It can remove 20 mg bisphenol A (BPA) within 10 min better than traditional metal oxidate and nanomaterials. In the aquatic environment, CA-900Q 1-1 has a high resistance to inorganic anions. CA-900Q 1-1, possessing a high proportion of graphitic nitrogen, provides a sufficient number of active sites for persulfate activation. In addition, the catalyst yielded sizeable specific surface areas (SSAs) (1756.1 m2/g) and a hierarchical pore structure, which helps to improve the mass transfer in the carbon framework. The efficient adsorption of pollutants by the catalyst shortens the time required for target organic molecules to migrate to the catalyst surface and hierarchical pore structure. Furthermore, the catalyst has excellent electrical conductivity (R = 1.73 Ω), which enables pollutants adsorbed on the catalyst surface to transfer electrons to the persulfate through the N-doped sp2-hybrid carbon network faster.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA