Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Front Cell Dev Biol ; 12: 1343938, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745861

RESUMO

This review examines the complex role of Pin1 in the development and treatment of cancer. Pin1 is the only peptidyl-prolyl isomerase (PPIase) that can recognize and isomerize phosphorylated Ser/Thr-Pro peptide bonds. Pin1 catalyzes a structural change in phosphorylated Ser/Thr-Pro motifs that can modulate protein function and thereby impact cell cycle regulation and tumorigenesis. The molecular mechanisms by which Pin1 contributes to oncogenesis are reviewed, including Pin1 overexpression and its correlation with poor cancer prognosis, and the contribution of Pin1 to aggressive tumor phenotypes involved in therapeutic resistance is discussed, with an emphasis on cancer stem cells, the epithelial-to-mesenchymal transition (EMT), and immunosuppression. The therapeutic potential of Pin1 inhibition in cancer is discussed, along with the promise and the difficulties in identifying potent, drug-like, small-molecule Pin1 inhibitors. The available evidence supports the efficacy of targeting Pin1 as a novel cancer therapeutic by analyzing the role of Pin1 in a complex network of cancer-driving pathways and illustrating the potential of synergistic drug combinations with Pin1 inhibitors for treating aggressive and drug-resistant tumors.

2.
Cells ; 13(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38727267

RESUMO

The unique prolyl isomerase Pin1 binds to and catalyzes cis-trans conformational changes of specific Ser/Thr-Pro motifs after phosphorylation, thereby playing a pivotal role in regulating the structure and function of its protein substrates. In particular, Pin1 activity regulates the affinity of a substrate for E3 ubiquitin ligases, thereby modulating the turnover of a subset of proteins and coordinating their activities after phosphorylation in both physiological and disease states. In this review, we highlight recent advancements in Pin1-regulated ubiquitination in the context of cancer and neurodegenerative disease. Specifically, Pin1 promotes cancer progression by increasing the stabilities of numerous oncoproteins and decreasing the stabilities of many tumor suppressors. Meanwhile, Pin1 plays a critical role in different neurodegenerative disorders via the regulation of protein turnover. Finally, we propose a novel therapeutic approach wherein the ubiquitin-proteasome system can be leveraged for therapy by targeting pathogenic intracellular targets for TRIM21-dependent degradation using stereospecific antibodies.


Assuntos
Peptidilprolil Isomerase de Interação com NIMA , Proteólise , Ubiquitinação , Humanos , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Conformação Proteica , Animais , Neoplasias/metabolismo , Neoplasias/patologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Ubiquitina-Proteína Ligases/metabolismo
4.
Nat Commun ; 15(1): 3220, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622115

RESUMO

Induced oncoproteins degradation provides an attractive anti-cancer modality. Activation of anaphase-promoting complex (APC/CCDH1) prevents cell-cycle entry by targeting crucial mitotic proteins for degradation. Phosphorylation of its co-activator CDH1 modulates the E3 ligase activity, but little is known about its regulation after phosphorylation and how to effectively harness APC/CCDH1 activity to treat cancer. Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1)-catalyzed phosphorylation-dependent cis-trans prolyl isomerization drives tumor malignancy. However, the mechanisms controlling its protein turnover remain elusive. Through proteomic screens and structural characterizations, we identify a reciprocal antagonism of PIN1-APC/CCDH1 mediated by domain-oriented phosphorylation-dependent dual interactions as a fundamental mechanism governing mitotic protein stability and cell-cycle entry. Remarkably, combined PIN1 and cyclin-dependent protein kinases (CDKs) inhibition creates a positive feedback loop of PIN1 inhibition and APC/CCDH1 activation to irreversibly degrade PIN1 and other crucial mitotic proteins, which force permanent cell-cycle exit and trigger anti-tumor immunity, translating into synergistic efficacy against triple-negative breast cancer.


Assuntos
Proteínas de Ciclo Celular , Proteômica , Ciclo Celular/fisiologia , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Fosforilação , Estabilidade Proteica , Peptidilprolil Isomerase de Interação com NIMA/genética , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Mitose
5.
Front Cell Dev Biol ; 12: 1343962, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628595

RESUMO

Tauopathies are neurodegenerative diseases characterized by deposits of abnormal Tau protein in the brain. Conventional tauopathies are often defined by a limited number of Tau epitopes, notably neurofibrillary tangles, but emerging evidence suggests structural heterogeneity among tauopathies. The prolyl isomerase Pin1 isomerizes cis P-tau to inhibit the development of oligomers, tangles and neurodegeneration in multiple neurodegenerative diseases such as Alzheimer's disease, traumatic brain injury, vascular contribution to cognitive impairment and dementia (VCID) and preeclampsia (PE). Thus, cis P-tau has emerged as an early etiological driver, blood marker and therapeutic target for multiple neurodegenerative diseases, with clinical trials ongoing. The discovery of cis P-tau and other tau pathologies in VCID and PE calls attention for simplistic classification of tauopathy in neurodegenerative diseases. These recent advances have revealed the exciting novel role of the Pin1-cis P-tau axis in the development and treatment of vascular contribution to cognitive impairment and dementia and preeclampsia.

6.
Nat Commun ; 14(1): 5414, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37669931

RESUMO

Preeclampsia (PE) is the leading cause of maternal and fetal mortality globally and may trigger dementia later in life in mothers and their offspring. However, the etiological drivers remain elusive. Cis P-tau is an early etiological driver and blood biomarker in pre-clinical Alzheimer's and after vascular or traumatic brain injury, which can be targeted by stereo-specific antibody, with clinical trials ongoing. Here we find significant cis P-tau in the placenta and serum of PE patients, and in primary human trophoblasts exposed to hypoxia or sera from PE patients due to Pin1 inactivation. Depletion of cis P-tau from PE patient sera by the antibody prevents their ability to disrupt trophoblast invasion and endovascular activity and to cause the PE-like pathological and clinical features in pregnant humanized tau mice. Our studies uncover that cis P-tau is a central circulating etiological driver and its stereo-specific antibody is valuable for early PE diagnosis and treatment.


Assuntos
Placenta , Pré-Eclâmpsia , Feminino , Gravidez , Humanos , Animais , Camundongos , Causalidade , Trofoblastos , Anticorpos , Mães
7.
J Neurochem ; 166(6): 904-914, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37638382

RESUMO

Conventional tauopathies are a group of disease characterized by tau inclusions in the brains, including Alzheimer's disease (AD), Pick's disease (PiD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and certain types of frontotemporal dementia (FTD), among which AD is the most prevalent. Extensive post-translational modifications, especially hyperphosphorylation, and abnormal aggregation of tau protein underlie tauopathy. Cis-trans isomerization of protein plays an important role in protein folding, function, and degradation, which is regulated by peptidyl-proline isomerases (PPIases). Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1), the only PPIase found to isomerize Pro following phosphorylated Ser or Thr residues, alters phosphorylated tau protein conformation at pT231-P motif. The cis P-tau but not trans P-tau serves as an early driver of multiple neurodegenerative disease, encompassing AD, traumatic brain injury (TBI), chronic traumatic encephalopathy (CTE), and vascular contributions to cognitive impairment and dementia (VCID). Cis but not trans P-tau is resistant to protein dephosphorylation and degradation, and also prone to protein aggregation. Cis P-tau loses its ability to stabilize microtubule, causing and spreading tauopathy mainly in axons, a pathological process called cistauosis. The conformation-specific monoclonal antibody that targets only the cis P-tau serves as a very early diagnosis method and a potential treatment of not only conventional tauopathies but also nonconventional tauopathies such as VCID, with clinical trials ongoing. Notably, cis P-tau antibody is the only clinical-stage Alzheimer's therapeutic that has shown the efficacy in animal models of not only AD but also TBI and stroke, which are very early stages of dementia. Here we review the identification and pathological consequences of cis pt231-tau, the role of its regulator Pin1, as well as the clinical implication of cis pt231-tau conformation-specific antibody in conventional and nonconventional tauopathies.


Assuntos
Doença de Alzheimer , Lesões Encefálicas Traumáticas , Demência Vascular , Doenças Neurodegenerativas , Doença de Pick , Tauopatias , Animais , Proteínas tau , Anticorpos Monoclonais
9.
Res Sq ; 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36711754

RESUMO

Cyclin-dependent kinases (CDKs) mediated phosphorylation inactivates the anaphase-promoting complex (APC/CCDH1), an E3 ubiquitin ligase that contains the co-activator CDH1, to promote G1/S transition. PIN1 is a phosphorylation-directed proline isomerase and a master cancer signaling regulator. However, little are known about APC/CCDH1 regulation after phosphorylation and about PIN1 ubiquitin ligases. Here we uncover a domain-oriented reciprocal inhibition that controls the timely G1/S transition: The non-phosphorylated APC/CCDH1 E3 ligase targets PIN1 for degradation in G1 phase, restraining G1/S transition; APC/CCDH1 itself, after phosphorylation by CDKs, is inactivated by PIN1-catalyzed isomerization, promoting G1/S transition. In cancer, PIN1 overexpression and APC/CCDH1 inactivation reinforce each other to promote uncontrolled proliferation and tumorigenesis. Importantly, combined PIN1- and CDK4/6-inhibition reactivates APC/CCDH1 resulting in PIN1 degradation and an insurmountable G1 arrest that translates into synergistic anti-tumor activity against triple-negative breast cancer in vivo. Reciprocal inhibition of PIN1 and APC/CCDH1 is a novel mechanism to control timely G1/S transition that can be harnessed for synergistic anti-cancer therapy.

10.
Cancer Lett ; 524: 161-171, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34687791

RESUMO

Sorafenib and its derivative regorafenib are the first- and second-line targeted drugs for advanced HCC, respectively. Although both drugs improve overall survival, drug resistance remains the major barrier to their full efficacy. Thus, strategies to enhance sorafenib and regorafenib efficacy against HCC are solely needed. Interleukin-6 receptor alpha (IL-6Rα) is the receptor of IL-6, a multi-functional cytokine, which plays key roles in liver-regeneration, inflammation and development of hepatocellular carcinoma (HCC). Here we show the expression of IL-6Rα was induced in response to sorafenib. Depletion of IL-6Rα abolished IL-6 induced STAT3 phosphorylation at 705th tyrosine and tumor growth of HCC cells under sorafenib treatment. Mechanistically, activating transcription factor 3 (ATF3) was induced in response to sorafenib and subsequently bound to the promoter of IL-6Rα, leading to its transcriptional activation. Depletion of ATF3 or its upstream transcription factor, ATF4, attenuated IL-6Rα induction and IL-6 mediated sorafenib resistance. The ATF4-ATF3-IL-6Rα cascade is also activated by regorafenib. Furthermore, blockade of IL-6Rα with the FDA approved IL-6Rα antibody drug, Sarilumab, drastically attenuated both sorafenib and regorafenib resistance in patient-derived xenograft (PDX) tumors, where human IL-6 could be detected by a novel in situ hybridization technique, named RNAscope. Together, our data reveal that ATF3-mediated IL-6Rα up-regulation promotes both sorafenib and regorafenib resistance in HCC, and targeting IL-6Rα represents a novel therapeutic strategy to enhance sorafenib/regorafenib efficacy for advanced HCC treatment.


Assuntos
Fator 3 Ativador da Transcrição/genética , Carcinoma Hepatocelular/tratamento farmacológico , Interleucina-6/genética , Neoplasias Hepáticas/tratamento farmacológico , Receptores de Interleucina-6/genética , Animais , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Compostos de Fenilureia/farmacologia , Piridinas/farmacologia , Sorafenibe/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Cell ; 184(18): 4753-4771.e27, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34388391

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is characterized by notorious resistance to current therapies attributed to inherent tumor heterogeneity and highly desmoplastic and immunosuppressive tumor microenvironment (TME). Unique proline isomerase Pin1 regulates multiple cancer pathways, but its role in the TME and cancer immunotherapy is unknown. Here, we find that Pin1 is overexpressed both in cancer cells and cancer-associated fibroblasts (CAFs) and correlates with poor survival in PDAC patients. Targeting Pin1 using clinically available drugs induces complete elimination or sustained remissions of aggressive PDAC by synergizing with anti-PD-1 and gemcitabine in diverse model systems. Mechanistically, Pin1 drives the desmoplastic and immunosuppressive TME by acting on CAFs and induces lysosomal degradation of the PD-1 ligand PD-L1 and the gemcitabine transporter ENT1 in cancer cells, besides activating multiple cancer pathways. Thus, Pin1 inhibition simultaneously blocks multiple cancer pathways, disrupts the desmoplastic and immunosuppressive TME, and upregulates PD-L1 and ENT1, rendering PDAC eradicable by immunochemotherapy.


Assuntos
Imunoterapia , Terapia de Alvo Molecular , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/imunologia , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/imunologia , Adenocarcinoma/patologia , Aloenxertos/imunologia , Motivos de Aminoácidos , Animais , Apoptose/efeitos dos fármacos , Antígeno B7-H1/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Sinergismo Farmacológico , Endocitose/efeitos dos fármacos , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Humanos , Terapia de Imunossupressão , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Camundongos , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/metabolismo , Oncogenes , Organoides/efeitos dos fármacos , Organoides/patologia , Transdução de Sinais/efeitos dos fármacos , Análise de Sobrevida , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
12.
J Hazard Mater ; 419: 126378, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34175703

RESUMO

Cobalt is a hazardous material that has harmful effects on neurotoxicity. Excessive exposure to cobalt or inactivation of the unique proline isomerase Pin1 contributes to age-dependent neurodegeneration. However, nothing is known about the role of Pin1 in cobalt-induced neurodegeneration. Here we find that out of several hazardous materials, only cobalt dose-dependently decreased Pin1 expression and alterations in its substrates, including cis and trans phosphorylated Tau in human neuronal cells, concomitant with neurotoxicity. Cobalt-induced neurotoxicity was aggravated by Pin1 genetic or chemical inhibition, but rescued by Pin1 upregulation. Furthermore, less than 4 µg/l of blood cobalt induced dose- and age-dependent Pin1 downregulation in murine brains, ensuing neurodegenerative changes. These defects were corroborated by changes in Pin1 substrates, including cis and trans phosphorylated Tau, amyloid precursor protein, ß amyloid and GSK3ß. Moreover, blood Pin1 was downregulated in human hip replacement patients with median blood cobalt level of 2.514 µg/l, which is significantly less than the safety threshold of 10 µg/l, suggesting an early role Pin1 played in neurodegenerative damages. Thus, Pin1 inactivation by cobalt contributes to age-dependent neurodegeneration, revealing that cobalt is a hazardous material triggering AD-like neurodegenerative damages.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Cobalto/toxicidade , Humanos , Camundongos , Peptidilprolil Isomerase de Interação com NIMA/genética , Fosforilação
13.
Sci Transl Med ; 13(596)2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078745

RESUMO

Compelling evidence supports vascular contributions to cognitive impairment and dementia (VCID) including Alzheimer's disease (AD), but the underlying pathogenic mechanisms and treatments are not fully understood. Cis P-tau is an early driver of neurodegeneration resulting from traumatic brain injury, but its role in VCID remains unclear. Here, we found robust cis P-tau despite no tau tangles in patients with VCID and in mice modeling key aspects of clinical VCID, likely because of the inhibition of its isomerase Pin1 by DAPK1. Elimination of cis P-tau in VCID mice using cis-targeted immunotherapy, brain-specific Pin1 overexpression, or DAPK1 knockout effectively rescues VCID-like neurodegeneration and cognitive impairment in executive function. Cis mAb also prevents and ameliorates progression of AD-like neurodegeneration and memory loss in mice. Furthermore, single-cell RNA sequencing revealed that young VCID mice display diverse cortical cell type-specific transcriptomic changes resembling old patients with AD, and the vast majority of these global changes were recovered by cis-targeted immunotherapy. Moreover, purified soluble cis P-tau was sufficient to induce progressive neurodegeneration and brain dysfunction by causing axonopathy and conserved transcriptomic signature found in VCID mice and patients with AD with early pathology. Thus, cis P-tau might play a major role in mediating VCID and AD, and antibody targeting it may be useful for early diagnosis, prevention, and treatment of cognitive impairment and dementia after neurovascular insults and in AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Demência Vascular , Doença de Alzheimer/complicações , Doença de Alzheimer/terapia , Animais , Encéfalo/metabolismo , Disfunção Cognitiva/terapia , Demência Vascular/terapia , Humanos , Imunoterapia , Camundongos , Peptidilprolil Isomerase de Interação com NIMA , Proteínas tau/metabolismo
14.
Nat Chem Biol ; 17(9): 954-963, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33972797

RESUMO

The peptidyl-prolyl isomerase, Pin1, is exploited in cancer to activate oncogenes and inactivate tumor suppressors. However, despite considerable efforts, Pin1 has remained an elusive drug target. Here, we screened an electrophilic fragment library to identify covalent inhibitors targeting Pin1's active site Cys113, leading to the development of Sulfopin, a nanomolar Pin1 inhibitor. Sulfopin is highly selective, as validated by two independent chemoproteomics methods, achieves potent cellular and in vivo target engagement and phenocopies Pin1 genetic knockout. Pin1 inhibition had only a modest effect on cancer cell line viability. Nevertheless, Sulfopin induced downregulation of c-Myc target genes, reduced tumor progression and conferred survival benefit in murine and zebrafish models of MYCN-driven neuroblastoma, and in a murine model of pancreatic cancer. Our results demonstrate that Sulfopin is a chemical probe suitable for assessment of Pin1-dependent pharmacology in cells and in vivo, and that Pin1 warrants further investigation as a potential cancer drug target.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Peptidilprolil Isomerase de Interação com NIMA/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
15.
Cereb Cortex ; 31(6): 3082-3095, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33569579

RESUMO

Pin1 is a unique isomerase that regulates protein conformation and function after phosphorylation. Pin1 aberration contributes to some neurological diseases, notably Alzheimer's disease, but its role in epilepsy is not fully understood. We found that Pin1-deficient mice had significantly increased seizure susceptibility in multiple chemical inducing models and developed age-dependent spontaneous epilepsy. Electrophysiologically, Pin1 ablation enhanced excitatory synaptic transmission to prefrontal cortex (PFC) pyramidal neurons without affecting their intrinsic excitability. Biochemically, Pin1 ablation upregulated AMPA receptors and GluA1 phosphorylation by acting on phosphorylated CaMKII. Clinically, Pin1 was decreased significantly, whereas phosphorylated CaMKII and GluA1 were increased in the neocortex of patients with epilepsy. Moreover, Pin1 expression restoration in the PFC of Pin1-deficient mice using viral gene transfer significantly reduced phosphorylated CaMKII and GluA1 and effectively suppressed their seizure susceptibility. Thus, Pin1-CaMKII-AMPA receptors are a novel axis controlling epileptic susceptibility, highlighting attractive new therapeutic strategies.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Epilepsia/metabolismo , Predisposição Genética para Doença , Peptidilprolil Isomerase de Interação com NIMA/deficiência , Receptores de AMPA/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Epilepsia/induzido quimicamente , Epilepsia/genética , Epilepsia/patologia , Predisposição Genética para Doença/genética , Humanos , Masculino , Camundongos , Camundongos Knockout , Peptidilprolil Isomerase de Interação com NIMA/genética , Pilocarpina/toxicidade , Receptores de AMPA/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
16.
Alzheimer Dis Assoc Disord ; 35(3): 271-274, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32568784

RESUMO

Cancer diagnoses are associated with better long-term memory in older adults, possibly reflecting a range of social confounders that increase cancer risk but improve memory. We used spouse's memory as a negative control outcome to evaluate this possible confounding, since spouses share social characteristics and environments, and individuals' cancers are unlikely to cause better memory among their spouses. We estimated the association of an individual's incident cancer diagnosis (exposure) with their own (primary outcome) and their spouse's (negative control outcome) memory decline in 3601 couples from 1998 to 2014 in the Health and Retirement Study, using linear mixed-effects models. Incident cancer predicted better long-term memory for the diagnosed individual. We observed no association between an individual's cancer diagnosis and rate of spousal memory decline. This negative control study suggests that the inverse association between incident cancer and rate of memory decline is unlikely to be attributable to social/behavioral factors shared between spouses.


Assuntos
Memória/fisiologia , Neoplasias/diagnóstico , Cônjuges/estatística & dados numéricos , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Inquéritos e Questionários
17.
Nat Chem Biol ; 16(9): 979-987, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32483379

RESUMO

Peptidyl-prolyl cis/trans isomerase NIMA-interacting 1 (Pin1) is commonly overexpressed in human cancers, including pancreatic ductal adenocarcinoma (PDAC). While Pin1 is dispensable for viability in mice, it is required for activated Ras to induce tumorigenesis, suggesting a role for Pin1 inhibitors in Ras-driven tumors, such as PDAC. We report the development of rationally designed peptide inhibitors that covalently target Cys113, a highly conserved cysteine located in the Pin1 active site. The inhibitors were iteratively optimized for potency, selectivity and cell permeability to give BJP-06-005-3, a versatile tool compound with which to probe Pin1 biology and interrogate its role in cancer. In parallel to inhibitor development, we employed genetic and chemical-genetic strategies to assess the consequences of Pin1 loss in human PDAC cell lines. We demonstrate that Pin1 cooperates with mutant KRAS to promote transformation in PDAC, and that Pin1 inhibition impairs cell viability over time in PDAC cell lines.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Peptidilprolil Isomerase de Interação com NIMA/antagonistas & inibidores , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Animais , Antineoplásicos/química , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Cristalografia por Raios X , Cisteína/metabolismo , Desenho de Fármacos , Inibidores Enzimáticos/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Camundongos , Células NIH 3T3 , Peptidilprolil Isomerase de Interação com NIMA/química , Peptidilprolil Isomerase de Interação com NIMA/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Conformação Proteica , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
18.
J Pineal Res ; 69(2): e12665, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32358852

RESUMO

Death-associated protein kinase 1 (DAPK1) is upregulated in the brains of human Alzheimer's disease (AD) patients compared with normal subjects, and aberrant DAPK1 regulation is implicated in the development of AD. However, little is known about whether and how DAPK1 function is regulated in AD. Here, we identified melatonin as a critical regulator of DAPK1 levels and function. Melatonin significantly decreases DAPK1 expression in a post-transcriptional manner in neuronal cell lines and mouse primary cortical neurons. Moreover, melatonin directly binds to DAPK1 and promotes its ubiquitination, resulting in increased DAPK1 protein degradation through a proteasome-dependent pathway. Furthermore, in tau-overexpressing mouse brain slices, melatonin treatment and the inhibition of DAPK1 kinase activity synergistically decrease tau phosphorylation at multiple sites related to AD. In addition, melatonin and DAPK1 inhibitor dramatically accelerate neurite outgrowth and increase the assembly of microtubules. Mechanistically, melatonin-mediated DAPK1 degradation increases the activity of Pin1, a prolyl isomerase known to play a protective role against tau hyperphosphorylation and tau-related pathologies. Finally, elevated DAPK1 expression shows a strong correlation with the decrease in melatonin levels in human AD brains. Combined, these results suggest that DAPK1 regulation by melatonin is a novel mechanism that controls tau phosphorylation and function and offers new therapeutic options for treating human AD.


Assuntos
Doença de Alzheimer/enzimologia , Encéfalo/enzimologia , Proteínas Quinases Associadas com Morte Celular/biossíntese , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Melatonina/farmacologia , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Células HeLa , Humanos , Melatonina/metabolismo , Camundongos
19.
Cancer Res ; 80(14): 3033-3045, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32193285

RESUMO

PARP inhibitor monotherapies are effective to treat patients with breast, ovary, prostate, and pancreatic cancer with BRCA1 mutations, but not to the much more frequent BRCA wild-type cancers. Searching for strategies that would extend the use of PARP inhibitors to BRCA1-proficient tumors, we found that the stability of BRCA1 protein following ionizing radiation (IR) is maintained by postphosphorylational prolyl-isomerization adjacent to Ser1191 of BRCA1, catalyzed by prolyl-isomerase Pin1. Extinction of Pin1 decreased homologous recombination (HR) to the level of BRCA1-deficient cells. Pin1 stabilizes BRCA1 by preventing ubiquitination of Lys1037 of BRCA1. Loss of Pin1, or introduction of a BRCA1-mutant refractory to Pin1 binding, decreased the ability of BRCA1 to localize to repair foci and augmented IR-induced DNA damage. In vitro growth of HR-proficient breast, prostate, and pancreatic cancer cells were modestly repressed by olaparib or Pin1 inhibition using all-trans retinoic acid (ATRA), while combination treatment resulted in near-complete block of cell proliferation. In MDA-MB-231 xenografts and triple-negative breast cancer patient-derived xenografts, either loss of Pin1 or ATRA treatment reduced BRCA1 expression and sensitized breast tumors to olaparib. Together, our study reveals that Pin1 inhibition, with clinical widely used ATRA, acts as an effective HR disrupter that sensitizes BRCA1-proficient tumors to PARP inhibition. SIGNIFICANCE: PARP inhibitors have been limited to treat homologous recombination-deficient tumors. All-trans retinoic acid, by inhibiting Pin1 and destabilizing BRCA1, extends benefit of PARP inhibitors to patients with homologous recombination-proficient tumors.See related commentary by Cai, p. 2977.


Assuntos
Inibidores de Poli(ADP-Ribose) Polimerases , Neoplasias de Mama Triplo Negativas , Proteína BRCA1/genética , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Peptidilprolil Isomerase de Interação com NIMA/genética , Peptidilprolil Isomerase , Ftalazinas/farmacologia , Ftalazinas/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética
20.
Mol Cancer Ther ; 19(3): 906-919, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31879364

RESUMO

Gastric cancer is the third leading cause of cancer-related death worldwide. Diffuse type gastric cancer has the worst prognosis due to notorious resistance to chemotherapy and enrichment of cancer stem-like cells (CSC) associated with the epithelial-to-mesenchymal transition (EMT). The unique proline isomerase PIN1 is a common regulator of oncogenic signaling networks and is important for gastric cancer development. However, little is known about its roles in CSCs and drug resistance in gastric cancer. In this article, we demonstrate that PIN1 overexpression is closely correlated with advanced tumor stages, poor chemo-response and shorter recurrence-free survival in diffuse type gastric cancer in human patients. Furthermore, shRNA-mediated genetic or all-trans retinoic acid-mediated pharmaceutical inhibition of PIN1 in multiple human gastric cancer cells potently suppresses the EMT, cell migration and invasion, and lung metastasis. Moreover, PIN1 genetic or pharmaceutical inhibition potently eliminates gastric CSCs and suppresses their self-renewal and tumorigenicity in vitro and in vivo Consistent with these phenotypes, are that PIN1 biochemically targets multiple signaling molecules and biomarkers in EMT and CSCs and that genetic and pharmaceutical PIN1 inhibition functionally and drastically enhances the sensitivity of gastric cancer to multiple chemotherapy drugs in vitro and in vivo These results demonstrate that PIN1 inhibition sensitizes chemotherapy in gastric cancer cells by targeting CSCs, and suggest that PIN1 inhibitors may be used to overcome drug resistance in gastric cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares/tratamento farmacológico , Peptidilprolil Isomerase de Interação com NIMA/antagonistas & inibidores , Células-Tronco Neoplásicas/efeitos dos fármacos , Neoplasias Gástricas/tratamento farmacológico , Tretinoína/farmacologia , Adulto , Animais , Antineoplásicos/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Transição Epitelial-Mesenquimal , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Peptidilprolil Isomerase de Interação com NIMA/genética , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Prognóstico , RNA Interferente Pequeno/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA