Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(7)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37049264

RESUMO

Indium oxide (In2O3) is a widely used n-type semiconductor for detection of pollutant gases; however, its gas selectivity and sensitivity have been suboptimal in previous studies. In this work, zinc-doped indium oxide nanowires with appropriate morphologies and high crystallinity were synthesized using chemical vapor deposition (CVD). An accurate method for electrical measurement was attained using a single nanowire microdevice, showing that electrical resistivity increased after doping with zinc. This is attributed to the lower valence of the dopant, which acts as an acceptor, leading to the decrease in electrical conductivity. X-ray photoelectron spectroscopy (XPS) analysis confirms the increased oxygen vacancies due to doping a suitable number of atoms, which altered oxygen adsorption on the nanowires and contributed to improved gas sensing performance. The sensing performance was evaluated using reducing gases, including carbon monoxide, acetone, and ethanol. Overall, the response of the doped nanowires was found to be higher than that of undoped nanowires at a low concentration (5 ppm) and low operating temperatures. At 300 °C, the gas sensing response of zinc-doped In2O3 nanowires was 13 times higher than that of undoped In2O3 nanowires. The study concludes that higher zinc doping concentration in In2O3 nanowires improves gas sensing properties by increasing oxygen vacancies after doping and enhancing gas molecule adsorption. With better response to reducing gases, zinc-doped In2O3 nanowires will be applicable in environmental detection and life science.

2.
Nanomaterials (Basel) ; 13(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37049291

RESUMO

We report an efficient method to synthesize undoped and K-doped rare cubic tungsten trioxide nanowires through the thermal evaporation of WO3 powder without a catalyst. The WO3 nanowires are reproducible and stable with a low-cost growth process. The thermal evaporation processing was conducted in a three-zone horizontal tube furnace over a temperature range of 550-850 °C, where multiple substrates were placed at different temperature zones. The processing parameters, including pressure, temperature, type of gas, and flow rate, were varied and studied in terms of their influence on the morphology, aspect ratio and density of the nanowires. The morphologies of the products were observed with scanning electron microscopy. High resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction studies were conducted to further identify the chemical composition, crystal structure and growth direction of the nanostructures. Additionally, the growth mechanism has been proposed. Furthermore, we investigated the potassium doping effect on the physical properties of the nanostructures. Photoluminescence measurements show that there were shorter emission bands at 360 nm and 410 nm. Field emission measurements show that the doping effect significantly reduced the turn-on electric field and increased the enhancement factor. Furthermore, as compared with related previous research, the K-doped WO3 nanowires synthesized in this study exhibited excellent field emission properties, including a superior field enhancement factor and turn-on electric field. The study reveals the potential of WO3 nanowires in promising applications for sensors, field emitters and light-emitting diodes.

3.
Nanomaterials (Basel) ; 12(7)2022 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-35407319

RESUMO

With the continuous advancement of high-tech industries, how to properly handle pollutants has become urgent. Photocatalysis is a solution that may effectively degrade pollutants into harmless molecules. In this study, we synthesized single crystalline Zn2SnO4 (ZTO) nanowires through chemical vapor deposition and selective etching. The chemical bath redox method was used to modify the ZTO nanowires with Ag nanoparticles to explore the photocatalytic properties of the nanoheterostructures. The combination of the materials here is rare. Optical measurements by photoluminescence (PL) and UV-Vis show that the PL spectrum of ZTO nanowires was mainly in the visible light region and attributed to oxygen vacancies. The luminescence intensity of the nanowires was significantly reduced after modification, demonstrating that the heterojunction could effectively reduce the electron-hole pair recombination. The reduction increased with the increase in Ag decoration. The conversion from the UV-Vis absorption spectrum to the Tauc Plot shows that the band gap of the nanowire was 4.05 eV. With 10 ppm methylene blue (MB) as the degradation solution, ZTO nanowires exhibit excellent photodegradation efficiency. Reusability and stability in photodegradation of the nanowires were demonstrated. Photocatalytic efficiency increases with the number of Ag nanoparticles. The main reaction mechanism was confirmed by photocatalytic inhibitors. This study enriches our understanding of ZTO-based nanostructures and facilitates their applications in water splitting, sewage treatment and air purification.

4.
Nanomaterials (Basel) ; 12(7)2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35407326

RESUMO

Owing to its unique and variable lattice structure and stoichiometric ratio, tungsten oxide is suitable for material modification; for example, doping is expected to improve its catalytic properties. However, most of the doping experiments are conducted by hydrothermal or multi-step synthesis, which is not only time-consuming but also prone to solvent contamination, having little room for mass production. Here, without a catalyst, we report the formation of high-crystallinity manganese-doped and potassium-doped tungsten oxide nanowires through chemical vapor deposition (CVD) with interesting characterization, photocatalytic, and gas sensing properties. The structure and composition of the nanowires were characterized by transmission electron microscopy (TEM) and energy-dispersive spectroscopy (EDS), respectively, while the morphology and chemical valence were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. Electrical measurements showed that the single nanowires doped with manganese and potassium had resistivities of 1.81 × 0-5 Ω·m and 1.93 × 10-5 Ω·m, respectively. The doping contributed to the phase transition from monoclinic to metastable hexagonal for the tungsten oxide nanowires, the structure of which is known for its hexagonal electron channels. The hexagonal structure provided efficient charge transfer and enhanced the catalytic efficiency of the tungsten oxide nanowires, resulting in a catalytic efficiency of 98.5% for the manganese-doped tungsten oxide nanowires and 97.73% for the potassium-doped tungsten oxide nanowires after four hours of degradation of methylene blue. Additionally, the gas sensing response for 20 ppm of ethanol showed a positive dependence of doping with the manganese-doped and potassium-doped responses being 14.4% and 29.7%, respectively, higher than the pure response at 250 °C. The manganese-doped and potassium-doped tungsten oxide nanowires are attractive candidates in gas sensing, photocatalytic, and energy storage applications, including water splitting, photochromism, and rechargeable batteries.

5.
Nanomaterials (Basel) ; 12(6)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35335710

RESUMO

In this study, indium tin oxide nanowires (ITO NWs) with high density and crystallinity were synthesized by chemical vapor deposition (CVD) via a vapor-liquid-solid (VLS) route; the NWs were decorated with 1 at% and 3 at% silver nanoparticles on the surface by a unique electrochemical method. The ITO NWs possessed great morphologies with lengths of 5~10 µm and an average diameter of 58.1 nm. Characterization was conducted through transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and X-ray photoelectron spectroscope (XPS) to identify the structure and composition of the ITO NWs. The room temperature photoluminescence (PL) studies show that the ITO NWs were of visible light-emitting properties, and there were a large number of oxygen vacancies on the surface. The successful modification of Ag was confirmed by TEM, XRD and XPS. PL analysis reveals that there was an extra Ag signal at around 1.895 eV, indicating the potential application of Ag-ITO NWs as nanoscale optical materials. Electrical measurements show that more Ag nanoparticles on the surface of ITO NWs contributed to higher resistivity, demonstrating the change in the electron transmission channel of the Ag-ITO NWs. ITO NWs and Ag-ITO NWs are expected to enhance the performance of electronic and optoelectronic devices.

6.
Nanoscale Res Lett ; 15(1): 197, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33052458

RESUMO

In this study, self-catalyzed ß-FeSi2 nanowires, having been wanted but seldom achieved in a furnace, were synthesized via chemical vapor deposition method where the fabrication of ß-FeSi2 nanowires occurred on Si (100) substrates through the decomposition of the single-source precursor of anhydrous FeCl3 powders at 750-950 °C. We carefully varied temperatures, duration time, and the flow rates of carrier gases to control and investigate the growth of the nanowires. The morphology of the ß-FeSi2 nanowires was observed with scanning electron microscopy (SEM), while the structure of them was analyzed with X-ray diffraction (XRD) and transmission electron microscopy (TEM). The growth mechanism has been proposed and the physical properties of the iron disilicide nanowires were measured as well. In terms of the magnetization of ß-FeSi2, nanowires were found to be different from bulk and thin film; additionally, longer ß-FeSi2 nanowires possessed better magnetic properties, showing the room-temperature ferromagnetic behavior. Field emission measurements demonstrate that ß-FeSi2 nanowires can be applied in field emitters.

7.
Nanomaterials (Basel) ; 10(11)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33113939

RESUMO

In this study, indium oxide nanowires of high-density were synthesized by chemical vapor deposition (CVD) through a vapor-liquid-solid (VLS) mechanism without carrier gas. The indium oxide nanowires possess great morphology with an aspect ratio of over 400 and an average diameter of 50 nm; the length of the nanowires could be over 30 µm, confirmed by field-emission scanning electron microscopy (SEM). Characterization was conducted with X-ray diffraction (XRD), transmission electron microscopy (TEM), photoluminescence spectrum (PL). High-resolution TEM studies confirm that the grown nanowires were single crystalline c-In2O3 nanowires of body-centered cubic structures. The room temperature PL spectrum shows a strong peak around 2.22 eV, originating from the defects in the crystal structure. The electrical resistivity of a single indium oxide nanowire was measured to be 1.0 × 10-4 Ω⋅cm, relatively low as compared with previous works, which may result from the abundant oxygen vacancies in the nanowires, acting as unintentional doping.

8.
Nanomaterials (Basel) ; 10(9)2020 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-32961744

RESUMO

In this work, we report a novel and efficient silicidation method to synthesize higher manganese silicide (HMS) nanowires with interesting characterization and physical properties. High density silicon nanowire arrays fabricated by chemical etching reacted with MnCl2 precursor through a unique double tube chemical vapor deposition (CVD) system, where we could enhance the vapor pressure of the precursor and provide stable Mn vapor with a sealing effect. It is crucial that the method enables the efficient formation of high quality higher manganese silicide nanowires without a change in morphology and aspect ratio during the process. X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were utilized to characterize the HMS nanowires. High-resolution TEM studies confirm that the HMS nanowires were single crystalline Mn27Si47 nanowires of Nowotny Chimney Ladder crystal structures. Magnetic property measurements show that the Mn27Si47 nanowire arrays were ferromagnetic at room temperature with a Curie temperature of over 300 K, highly depending on the relationship between the direction of the applied electric field and the axial direction of the standing nanowire arrays. Field emission measurements indicate that the 20 µm long nanowires possessed a field enhancement factor of 3307. The excellent physical properties of the HMS nanowires (NWs) make them attractive choices for applications in spintronic devices and field emitters.

9.
Nano Lett ; 20(3): 1510-1516, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-31725308

RESUMO

Crystalline Mo5O14 exhibits distinctive structural features such as tunnel structure and pseudolamellar arrangement according to the ideal model. However, the spatial resolution of the conventional technique of transmission electron microscopy (TEM) is insufficient to distinguish the actual positions of atoms. In this work, we aimed to systematically analyze and identify the Mo5O14 nanowires fabricated by the chemical vapor deposition (CVD) process. Utilizing high-angle annular dark-field (HAADF), annular bright-field (ABF), and enhanced annular bright-field (E-ABF) within the scanning transmission electron microscope (STEM) mode reveals the structural features at the atomic scale. In addition, the ultrahigh resolution images have confirmed the crystallographic insights in [001] growth direction for the Mo5O14 nanowires with a tunnel structure throughout the nanowire. The cross-sectional images show the unique close-packed plane and atomic arrangement with a network of MoO6 octahedra and MoO7 pentagonal bipyramids. These results are consistent with the theoretical atomic arrangement, supporting the realization of Mo5O14-type catalysts used in the selective oxidation process and battery applications.

10.
Materials (Basel) ; 12(7)2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30987124

RESUMO

In this study, an efficient method to synthesize CuO-CuS core-shell nanowires by two-step annealing process was reported. CuO nanowires were prepared on copper foil via thermal oxidation in a three-zone horizontal tube furnace. To obtain larger surface area for photocatalytic applications, we varied four processing parameters, finding that growth at 550 °C for 3 h with 16 °C/min of the ramping rate under air condition led to CuO nanowires of appropriate aspect ratio and number density. The second step, sulfurization process, was conducted to synthesize CuO-CuS core-shell nanowires by annealing with sulfur powder at 250 °C for 30 min under lower pressure. High-resolution transmission electron microscopy studies show that a 10 nm thick CuS shell formed and the growth mechanism of the nanowire heterostructure has been proposed. With BET, the surface area was measured to be 135.24 m²·g-1. The photocatalytic properties were evaluated by the degradation of methylene blue (MB) under visible light irradiation. As we compared CuO-CuS core-shell nanowires with CuO nanowires, the 4-hour degradation rate was enhanced from 67% to 89%. This could be attributed to more effective separation of photoinduced electron and hole pairs in the CuO-CuS heterostructure. The results demonstrated CuO-CuS core-shell nanowires as a promising photocatalyst for dye degradation in polluted water.

11.
Materials (Basel) ; 11(12)2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30486400

RESUMO

In this paper, we report the synthesis of iron silicide and ß-iron disilicide nanowires with chemical vapor deposition; remarkably, the latter has drawn much attention but has seldom been achieved. We also propose the formation mechanisms for the two phases. To investigate the effects of the growth parameters on compositions and morphologies of the iron silicide nanowires, we changed and studied the reaction time, substrate temperature, position of samples, and pressure. The reaction concentration was found to be altered by all of the parameters; thus, we observed different nanowires in terms of morphologies and compositions with scanning electron microscopy. To confirm the growth direction and crystal structure of the nanowires, we conducted x-ray diffraction and high-resolution transmission electron microscopy studies. With the potential of being utilized as circuit elements in electronic devices for Schottky barriers, ohmic contacts, and interconnection among silicon-based transistors, the silicide work at nanoscale is beneficial for nanoelectronics. Understanding the effects of these growth parameters facilitates the control of nanowire growth with better quality.

12.
Nano Lett ; 18(2): 778-784, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29369633

RESUMO

The fabrication and placement of high purity nanometals, such as one-dimensional copper (Cu) nanowires, for interconnection in integrated devices have been among the most important technological developments in recent years. Structural stability and oxidation prevention have been the key issues, and the defect control in Cu nanowire growth has been found to be important. Here, we report the synthesis of defect-free single-crystalline Cu nanowires by controlling the surface-assisted heterogeneous nucleation of Cu atomic layering on the graphite-like loop of an amorphous carbon (a-C) lacey film surface. Without a metal-catalyst or induced defects, the high quality Cu nanowires formed with high aspect ratio and high growth rate of 578 nm/s. The dynamic study of the growth of heterogeneous nanowires was conducted in situ with a high-resolution transmission electron microscope. The study illuminates the new mechanism by heterogeneous nucleation control and laying the groundwork for better understanding of heterosurface-assisted nucleation of defect-free Cu nanowire on a-C lacey film.

13.
Nano Lett ; 16(2): 1086-91, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26789624

RESUMO

Transition metal silicide nanowires (NWs) have attracted increasing attention as they possess advantages of both silicon NWs and transition metals. Over the past years, there have been reported with efforts on one silicide in a single silicon NW. However, the research on multicomponent silicides in a single silicon NW is still rare, leading to limited functionalities. In this work, we successfully fabricated ß-Pt2Si/Si/θ-Ni2Si, ß-Pt2Si/θ-Ni2Si, and Pt, Ni, and Si ternary phase axial NW heterostructures through solid state reactions at 650 °C. Using in situ transmission electron microscope (in situ TEM), the growth mechanism of silicide NW heterostructures and the diffusion behaviors of transition metals were systematically studied. Spherical aberration corrected scanning transmission electron microscope (Cs-corrected STEM) equipped with energy dispersive spectroscopy (EDS) was used to analyze the phase structure and composition of silicide NW heterostructures. Moreover, electrical and photon sensing properties for the silicide nanowire heterostructures demonstrated promising applications in nano-optoeletronic devices. We found that Ni, Pt, and Si ternary phase nanowire heterostructures have an excellent infrared light sensing property which is absent in bulk Ni2Si or Pt2Si. The above results would benefit the further understanding of heterostructured nano materials.

14.
Nanoscale Res Lett ; 10: 50, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25852347

RESUMO

In this work, chromium disilicide nanowires were synthesized by chemical vapor deposition (CVD) processes on Si (100) substrates with hydrous chromium chloride (CrCl3 · 6H2O) as precursors. Processing parameters, including the temperature of Si (100) substrates and precursors, the gas flow rate, the heating time, and the different flow gas of reactions were varied and studied; additionally, the physical properties of the chromium disilicide nanowires were measured. It was found that single-crystal CrSi2 nanowires with a unique morphology were grown at 700°C, while single-crystal Cr5Si3 nanowires were grown at 750°C in reducing gas atmosphere. The crystal structure and growth direction were identified, and the growth mechanism was proposed as well. This study with magnetism, photoluminescence, and field emission measurements demonstrates that CrSi2 nanowires are attractive choices for future applications in magnetic storage, photovoltaic, and field emitters.

15.
ACS Nano ; 8(9): 9457-62, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25133955

RESUMO

Phase change random access memory (PCRAM) has been extensively investigated for its potential applications in next-generation nonvolatile memory. In this study, indium(III) selenide (In2Se3) was selected due to its high resistivity ratio and lower programming current. Au/In2Se3-nanowire/Au phase change memory devices were fabricated and measured systematically in an in situ transmission electron microscope to perform a RESET/SET process under pulsed and dc voltage swept mode, respectively. During the switching, we observed the dynamic evolution of the phase transformation process. The switching behavior resulted from crystalline/amorphous change and revealed that a long pulse width would induce the amorphous or polycrystalline state by different pulse amplitudes, supporting the improvement of the writing speed, retention, and endurance of PCRAM.

16.
Anal Chem ; 86(9): 4348-53, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24670115

RESUMO

We demonstrate the formation of hollow nickel germanide nanostructures of Ni-Ge core-shell nanoparticles by solid state reactions. The structural evolutions of nickel germanide hollow nanostructures have been investigated in real-time ultrahigh vacuum transmission electron microscopy (UHV-TEM). Annealed above 450 °C, the nonequilibrium interdiffusion of core and shell species occurred at the interface; thus, Ni germanide hollow nanostructures were formed by solid state reactions involving the Kirkendall effect. In addition, the different hollow nanostructures formed from different core diameters of Ni-Ge core-shell nanoparticles have been studied. Also, we propose the mechanism with effects of the size and annealing duration on the solid state reactions based on the Kirkendall effect.


Assuntos
Nanoestruturas , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão
17.
Nanoscale Res Lett ; 8(1): 308, 2013 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-23819795

RESUMO

In this work, cobalt silicide nanowires were synthesized by chemical vapor deposition processes on Si (100) substrates with anhydrous cobalt chloride (CoCl2) as precursors. Processing parameters, including the temperature of Si (100) substrates, the gas flow rate, and the pressure of reactions were varied and studied; additionally, the physical properties of the cobalt silicide nanowires were measured. It was found that single-crystal CoSi nanowires were grown at 850°C ~ 880°C and at a lower gas flow rate, while single-crystal Co2Si nanowires were grown at 880°C ~ 900°C. The crystal structure and growth direction were identified, and the growth mechanism was proposed as well. This study with field emission measurements demonstrates that CoSi nanowires are attractive choices for future applications in field emitters.

18.
Nanoscale Res Lett ; 8(1): 290, 2013 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-23782805

RESUMO

In this article, we report the synthesis of single-crystalline nickel silicide nanowires (NWs) via chemical vapor deposition method using NiCl2·6H2O as a single-source precursor. Various morphologies of δ-Ni2Si NWs were successfully acquired by controlling the growth conditions. The growth mechanism of the δ-Ni2Si NWs was thoroughly discussed and identified with microscopy studies. Field emission measurements show a low turn-on field (4.12 V/µm), and magnetic property measurements show a classic ferromagnetic characteristic, which demonstrates promising potential applications for field emitters, magnetic storage, and biological cell separation.

19.
Nanoscale ; 4(15): 4702-6, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22744608

RESUMO

We report the melting behaviours of ZnO nanowire by heating ZnO-Al(2)O(3) core-shell heterostructures to form Al(2)O(3) nanotubes in an in situ ultrahigh vacuum transmission electron microscope (UHV-TEM). When the ZnO-Al(2)O(3) core-shell nanowire heterostructures were annealed at 600 °C under electron irradiation, the amorphous Al(2)O(3) shell became single crystalline and then the ZnO core melted. The average vanishing rate of the ZnO core was measured to be 4.2 nm s(-1). The thickness of the Al(2)O(3) nanotubes can be precisely controlled by the deposition process. Additionally, the inner geometry of nanotubes can be defined by the initial ZnO core. The result shows a promising method to obtain the biocompatible Al(2)O(3) nanotubes, which may be applied in drug delivery, biochemistry and resistive switching random access memory (ReRAM).

20.
Nano Lett ; 11(7): 2753-8, 2011 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-21657260

RESUMO

We report the critical effects of oxide on the growth of nanostructures through silicide formation. Under an in situ ultrahigh vacuum transmission electron microscope, it is observed from the conversion of Si nanowires into the metallic PtSi grains epitaxially through controlled reactions between lithographically defined Pt pads and Si nanowires. With oxide, instead of contact area, single crystal PtSi grains start forming either near the center between two adjacent pads or from the ends of Si nanowires, resulting in the heterostructure formation of Si/PtSi/Si. Without oxide, transformation from Si into PtSi begins at the contact area between them, resulting in the heterostructure formation of PtSi/Si/PtSi. The nanowire heterostructures have an atomically sharp interface with epitaxial relationships of Si(20-2)//PtSi(10-1) and Si[111]//PtSi[111]. Additionally, it has been observed that the existence of oxide significantly affects not only the growth position but also the growth behavior and the growth rate by two orders of magnitude. Molecular dynamics simulations have been performed to support our experimental results and the proposed growth mechanisms. In addition to fundamental science, the significance of the study matters for future processing techniques in nanotechnology and related applications as well.


Assuntos
Nanofios/química , Óxidos/química , Platina/química , Nanotecnologia , Tamanho da Partícula , Semicondutores , Silício/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA