Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 60(31): 4206-4209, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38523529

RESUMO

A novel silyl radical-induced cascade silylation/cyclization of 1,7-dienes has been realized employing readily available hydrosilanes as a silicon source and Cu(I) salt as a catalyst. This protocol introduces diverse silicon fragments into a challenging 7-membered ring structure and provides an efficient approach to a wide array of biologically important silyl-substituted benzo[b]azepin-2-ones. Several control experiments suggest that the reaction undergoes a free radical process. The gram-scale synthesis and late-stage transformations further demonstrate the scalability and applicability of the reaction in organic synthesis.

2.
Appl Microbiol Biotechnol ; 108(1): 159, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252324

RESUMO

Magnetic fields (MF) have been proven efficient in bioaugmentation, and the internal MFs have become competitive because they require no configuration, despite their application in waste gas treatment remaining largely unexplored. In this study, we firstly developed an intensity-regulable bioaugmentation with internal MF for gaseous chlorobenzene (CB) treatment with modified packing in batch bioreactors, and the elimination capacity increased by up to 26%, surpassing that of the external MF. Additionally, the microbial affinity to CB and the packing surface was enhanced, which was correlated with the ninefold increased secreted ratio of proteins/polysaccharides, 43% promoted cell surface hydrophobicity, and half reduced zeta potential. Furthermore, the dehydrogenase content was promoted over 3 times, and CB removal steadily increased with the rising intensity indicating enhanced biofilm activity and reduced CB bioimpedance; this was further supported by kinetic analysis, which resulted in improved cell adhesive ability and biological utilisation of CB. The results introduced a novel concept of adjustable magnetic bioaugmentation and provided technical support for industrial waste gas treatments. KEY POINTS: • Regulable magnetic bioaugmentation was developed to promote 26% chlorobenzene removal • Chlorobenzene mineralisation was enhanced under the magnetic field • Microbial adhesion was promoted through weakening repulsive forces.


Assuntos
Biofilmes , Clorobenzenos , Adesão Celular , Cinética , Membrana Celular , Gases
3.
Chemosphere ; 350: 141037, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38147927

RESUMO

The production of nitrous oxide (N2O) through the biological denitrification of nitric oxide (NO) from flue gases has recently been achieved. Although the temperature of flue gas after desulphurization is usually 45-70 °C, all previous studies conducted microbial denitrification of NO under mesophilic conditions (22-35 °C). This study investigated the biological conversion of NO to N2O in both mesophilic (35-45 °C) and thermophilic conditions (45-50 °C). The results showed that temperature has a great impact on N2O production, with a maximum conversion efficiency (from NO to N2O) of 82% achieved at 45 °C, which is obviously higher than the reported conversion efficiencies (24-71%) under mesophilic conditions. Additionally, high-throughput sequencing result showed that the genera Enterococcus, Clostridium, Romboutsia, and Streptococcus were closely related to NO denitrification and N2O production. Microbial communities at 40 and 45 °C had greater metabolizing capacities for polymeric carbon sources. This study suggests that thermophilic condition (45 °C) is more suitable for biological production of N2O from NO.


Assuntos
Microbiota , Óxido Nítrico , Desnitrificação , Óxido Nitroso , Temperatura , Nitrogênio
4.
Water Res ; 246: 120677, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37827037

RESUMO

Hydrophobic volatile organic sulfur compounds (VOSCs) are frequently found during sewage treatment, and their effective management is crucial for reducing malodorous complaints. Microbial fuel cells (MFC) are effective for both VOSCs abatement and energy recovery. However, the performance of MFC on VOSCs remains limited by the mass transfer efficiency of MFC in aqueous media. Inspired by two-phase partitioning biotechnology, silicone oil was introduced for the first time into MFC as a non-aqueous phase (NAP) medium to construct two-phase partitioning microbial fuel cell (TPPMFC) and augment the mass transfer of target VOSCs of propanethiol (PT) in the liquid phase. The PT removal efficiency within 32 h increased by 11-20% compared with that of single-phase MFC, and the coulombic efficiency of TPPMFC (11.01%) was 4.32-2.68 times that of single-phase MFC owing to the fact that highly active desulfurization and thiol-degrading bacteria (e.g., Pseudomonas, Achromobacter) were attached to the silicone oil surface, whereas sulfur-oxidizing bacteria (e.g., Thiobacillus, Commonas, Ottowia) were dominant on the anodic biofilm. The outer membrane cytochrome-c content and NADH dehydrogenase activity improved by 4.15 and 3.36 times in the TPPMFC, respectively. The results of metagenomics by KEGG and COG confirmed that the metabolism of PT in TPPMFC was comprehensive, and that the addition of a NAP upregulates the expression of genes related to sulfur metabolism, energy generation, and amino acid synthesis. This finding indicates that the NAP assisted bioelectrochemical systems would be promising to solve mass-transfer restrictions in low solubility contaminates removal.


Assuntos
Fontes de Energia Bioelétrica , Fontes de Energia Bioelétrica/microbiologia , Óleos de Silicone , Compostos de Sulfidrila , Enxofre , Biofilmes , Eletrodos , Eletricidade
5.
Sci Total Environ ; 807(Pt 1): 150589, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34597570

RESUMO

In this study, effects of two quorum sensing (QS) enhancement methods on the performance and biofilm of biofilters treating chlorobenzene were investigated. Three biofilters were set up with BF1 as a control, BF2 added exogenous N-acyl-homoserine lactones (AHLs) and BF3 inoculated AHLs-producing bacterium identified as Acinetobacter. The average chlorobenzene elimination capacities were 73 and 77 g/m3/h for BF2 and BF3 respectively, which were significantly higher than 50 g/m3/h for BF1. The wet biomass of BF2 and BF3 with QS enhancement eventually increased to 60 and 39 kg/m3 respectively, and it was 29 kg/m3 for BF1. Analysis on biofilms in three biofilters showed that distribution uniformity, extracellular polymeric substances production, adhesive strengths, viability, and metabolic capacity of biofilms were all prompted by the two QS enhancement methods. Comparisons between the two QS enhancement methods showed that adding exogenous AHLs had more significant enhancing effect on biofilm due to its higher AHLs level in start-up period, while AHLs-producing bacteria had an advantage in enhancing bacterial community diversity. These results demonstrate that QS enhancement methods have the potential to optimize the biofilm and thus improve the performance of biofilters treating recalcitrant VOCs.


Assuntos
Gases , Percepção de Quorum , Acil-Butirolactonas , Biofilmes , Clorobenzenos
6.
Chemosphere ; 291(Pt 3): 132951, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34826444

RESUMO

A biofilter treating gaseous VOCs is usually a packed bed system which will encounter bed clogging problems with increased pressure drop and uneven gas flow in the filter bed. In this study, a lab-scale fluidized bed reactor (FBR) was set up treating gaseous toluene and compared with a packed bed reactor (PBR) with the same bed height of 150 cm. During 45 days of operation, the average elimination capacity of the FBR was 242 g m-3∙h-1, similar to that in the PBR (228 g m-3∙h-1) under an inlet toluene concentration of 100-300 mg m-3 and an empty bed residence time (EBRT) of 0.60 s. A better mass transfer was also confirmed in the FBR by molecular residence time distribution measurement. The pressure drop of the PBR increased dramatically and exceeded 8000 Pa m-1 while that of the FBR maintained approximately 200 Pa m-1. On the 40th day, the air flow distribution in the FBR was more homogeneous than that in the PBR. The differences in pressure drop and air flow distribution were due to a much lower and more uniform distribution of biomass in the FBR than that in the PBR. The detached biomass collected from the off-gas of the FBR was almost 13 times of that from the PBR. Similar microbial community structures were observed in both systems, with the dominant bacterial genus Stenotrophomonas and the fungal genera Meyerozyma, Aspergillus. The results in this study demonstrated that the FBR could achieve a more stable performance than a PBR in long-term operation.


Assuntos
Gases , Tolueno , Bactérias , Biodegradação Ambiental , Biomassa , Reatores Biológicos , Filtração
7.
Chemosphere ; 244: 125529, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32050333

RESUMO

Fluidized bed bioreactors can overcome the limitations of packed bed bioreactors such as clogging, which has been observed in the industrial application for decades. The key to establish a gaseous fluidized bed bioreactor for treatment of volatile organic compounds is to achieve microbial growth on a light packing material. In this study, Two fungal species and two bacterial species were isolated to build a fungal fluidized-bed reactor (FFBR). A light packing material with wheat bran coated on expended polystyrene was used. The FFBR was operated for 65 days for gaseous ethanol removal and obtained elimination capacities of 500-1800 g∙m-3∙h-1 and removal efficiencies of 20-50%. The pressure drops was well controlled with values around 400 Pa∙m-1. Stress tolerant genera including Aureobasidium, Stenotrophomonas and Brevundimonas were dominant. Meyerozyma, whose species were present in an initial inoculated isolate, was detected among the dominant species with 28.70% relative abundance; they were reported to degrade complicated compounds under similarly stressful environments.


Assuntos
Reatores Biológicos/microbiologia , Etanol/metabolismo , Fungos , Gases
8.
Bioresour Technol ; 296: 122335, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31732413

RESUMO

Polyurethane (PU) sponges are popular packing material in biofilters and their smooth and hydrophobic surface often leads to an uneven distribution and detachment of biofilms. In this work, the surface of PU sponge was modified to obtain higher roughness and positive charge. The performances of two biofilters (BF1 with pristine sponge and BF2 with modified sponge) for benzene, toluene, ethylbenzene, and xylene (BTEX) removal were investigated. Total Volatile Organic Compound (TVOC) removal efficiency and CO2 increment were 61% and 804 ppm for BF2 respectively after start-up, compared with 51% and 538 ppm for BF1. Analysis on biofilms showed that the modification of PU sponge significantly improved the microbial growth, viability and adhesive strength in biofilms, reduced extracellular polymeric substance (EPS) and changed the microbial community. These results demonstrate that modified sponge can enhance biofilm formation and BTEX removal in biofilters and may applied in large-scale applications.


Assuntos
Tolueno , Xilenos , Benzeno , Derivados de Benzeno , Biodegradação Ambiental , Biofilmes , Matriz Extracelular de Substâncias Poliméricas
9.
AMB Express ; 8(1): 160, 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30284060

RESUMO

The effects of inlet VOCs (Volatile Organic Compounds) shifts on microbial community structure in a biofiltration system were investigated. A lab-scale biofilter was set up to treat eight VOCs sequentially. Short declines in removal efficiency appeared after VOCs shifts and then later recovered. The number of OTUs in the biofilter declined from 690 to 312 over time. At the phylum level, Actinobacteria and Proteobacteria remained dominant throughout the operation for all VOCs, with their combined abundance ranging from 60 to 90%. The abundances of Planctomycetes and Thermi increased significantly to 20% and 5%, respectively, with the intake of non-aromatic hydrocarbons. At the genus level, Rhodococcus was present in the highest abundance (≥ 10%) throughout the experiment, indicating its wide degradability. Some potential degraders were also found; namely, Thauera and Pseudomonas, which increased in abundance to 19% and 12% during treatment with ethyl acetate and toluene, respectively. Moreover, the microbial metabolic activity declined gradually with time, and the metabolic profile of the toluene-treating community differed significantly from those of other communities.

10.
Bioresour Technol ; 218: 751-60, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27423036

RESUMO

Proper preservation of microbial activity over long periods poses a considerable challenge for pollutant biopurification. A composite microbial agent, mainly composed of bacteria and fungi isolated by the current research team, was constructed in this study and its performance in the removal of mixed waste gases (containing α-pinene, n-butyl acetate and o-xylene) was investigated. According to the removal efficiency in the first 24h and the response to starvation, the optimal ratio of selected carriers (activated carbon, wheat bran and sawdust) was found to be 1:2:1. In some cases of storages, the removal capability of the microbial agent was more than twice that of the suspension. Microbial analysis showed that the inoculated bacterial and fungal strains dominated the agent preparation and utilization. These results indicated that the agent has potential for use in biopurification of mixed waste gas, favoring the reduction of environmental passives and longer retention of microbial activity.


Assuntos
Inoculantes Agrícolas/metabolismo , Poluentes Atmosféricos/metabolismo , Bactérias/metabolismo , Fungos/metabolismo , Monoterpenos/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Xilenos/metabolismo , Inoculantes Agrícolas/crescimento & desenvolvimento , Poluentes Atmosféricos/química , Bactérias/crescimento & desenvolvimento , Monoterpenos Bicíclicos , Reatores Biológicos , Fungos/crescimento & desenvolvimento , Gases/química , Gases/metabolismo , Monoterpenos/química , Compostos Orgânicos Voláteis/química , Madeira/microbiologia , Xilenos/química
11.
J Hazard Mater ; 303: 83-93, 2016 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-26513567

RESUMO

Bacteria and fungi are often utilized for the biodegradation of organic pollutants. This study compared fungal and/or bacterial biofiltration in treating toluene under both steady and unsteady states. Fungal biofilter (F-BF) removed less toluene than both bacterial biofilters (B-BF) and fungal & bacterial biofilters (F&B-BF) (<20% vs >60% vs >90%). The mineralization ratio was also lower in F-BF-levels were 2/3 and 1/2 of those values obtained by the other biofilters. Microbial analysis showed that richer communities were present in B-BF and F&B-BF, and that the Hypocreales genus which Trichoderma viride belongs to was much better represented in F&B-BF. The F&B-BF also supported enhanced robustness after 15-day starvation episodes; 1 day later the performance recovered to 80% of the original removal level. The combination of bacteria and fungi makes biofiltration a good option for VOC treatment including better removal and performance stability versus individual biofilters (bacteria or fungi dominated).


Assuntos
Bactérias/metabolismo , Biodegradação Ambiental , Fungos/metabolismo , Tolueno/metabolismo , Archaea , Reatores Biológicos , Dióxido de Carbono/análise , Meios de Cultura , DNA/química , DNA/isolamento & purificação , Filtração , Gases , Hypocreales/metabolismo , Trichoderma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA