Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Trends Ecol Evol ; 38(6): 554-567, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36803985

RESUMO

Species environmental niches are central to ecology, evolution, and global change research, but their characterization and interpretation depend on the spatial scale (specifically, the spatial grain) of their measurement. We find that the spatial grain of niche measurement is usually uninformed by ecological processes and varies by orders of magnitude. We illustrate the consequences of this variation for the volume, position, and shape of niche estimates, and discuss how it interacts with geographic range size, habitat specialization, and environmental heterogeneity. Spatial grain significantly affects the study of niche breadth, environmental suitability, niche evolution, niche tracking, and climate change effects. These and other fields will benefit from a more mechanism-informed choice of spatial grain and cross-grain evaluations that integrate different data sources.


Assuntos
Mudança Climática , Ecossistema
2.
Ecol Evol ; 11(18): 12378-12388, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34594506

RESUMO

AIM: (1) To understand geographic patterns of species discovery by examining the effect of growth form, range size, and geographic distribution on discovery probability of vascular plant species in China; (2) to find out which taxa harbor the largest number of undiscovered species and where those species locate; and (3) to find out the determinants of province-level mean discovery time and inventory completeness. LOCATION: China. METHODS: We compiled the discovery time and province-level geographic distributions of ~31,000 vascular plant species described between 1753 and 2013 from Flora of China. We used a Cox proportional hazard model to determine the biological and geographic correlates of discovery probability. Accumulation curves of species discoveries were fitted by a logistic discovery model to estimate inventory completeness of different growth forms and of different provinces. We then used linear regression to identify the determinants of mean discovery time and beta regression to identify the determinants of inventory completeness. RESULTS: We found that species with larger range size and distributed in northeastern part of China have a higher discovery probability. Coastal species were discovered earlier than inland species. Trees and shrubs of seed plants have the highest discovery probability while ferns have the lowest discovery probability. Herbs have the largest number of undiscovered species in China. Most undiscovered species will be found in southwest China, where three global biodiversity hot spots locate. Spatial patterns of mean discovery time and inventory completeness are mainly driven by the total number of species, human population density in an area, and latitude and longitude of a province. MAIN CONCLUSIONS: Socioeconomic factors primarily determine the discovery patterns of vascular plants in China. Undiscovered species are most likely to be narrow-ranged, inconspicuous endemic species such as herbs and ferns, which are prone to extinctions and locate in biodiversity hot spots in southwestern China.

3.
Am Nat ; 194(3): E52-E65, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31553219

RESUMO

Metacommunity theory and its constituent theory of island biogeography (TIB) have the potential to unify ecology across different scales. The TIB has been successful in predicting alpha diversity patterns, such as species-area relationships and species-abundance distributions, but lags behind in predicting spatial beta diversity patterns. In this study we use island biogeography theory as the starting point to integrate spatial beta diversity patterns into metacommunity theory. We first derive theoretical predictions for the expected beta diversity patterns under the classic MacArthur and Wilson framework, where all species have equal colonization and extinction rates. We then test these predictions for the avian community composition of 42 islands (and 93 species) in Thousand Island Lake, China. Our theoretical results corroborate that longer distance and smaller area lead to higher beta diversity and further reveal that pairwise beta diversity is independent of the size of the mainland species pool. We also find that for the partitioned pairwise beta diversity components, the turnover component increases with the ratio of extinction rates and colonization rates, while the nestedness component is a unimodal function of the ratio of extinction rates and colonization rates. For the empirical island system, we find that beta diversity patterns better distinguish a species-equivalent model from a species-nonequivalent model than alpha diversity patterns. Our findings suggest that beta diversity patterns provide a powerful tool in detecting nonneutral processes, and our model has the potential to incorporate more biological realism in future analyses.


Assuntos
Biodiversidade , Aves , Ilhas , Distribuição Animal , Animais , Biota , China , Extinção Biológica , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA