Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 947: 174605, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38997030

RESUMO

Sixty-nine total suspended particle (TSP) samples, paired with forty-eight surface soil samples, covering four seasons from January 2021 to November 2021, were collected from the Three Gorges Reservoir Region (TGRR). Twenty per- and poly-fluoroalkyl substances (PFASs) were analyzed to evaluate their contamination characteristics and understand the role of atmospheric deposition on the environmental loads in TGRR. The annual average concentrations of PFASs in TSP and soil were 37.2 ± 1.22 pg·m-3 and 0.798 ± 0.134 ng·g-1, respectively. For TSP, concentrations were highest in spring and lowest in summer. For soil, it was in autumn and winter, respectively. The seasonality was more influenced by anthropogenic activities than by meteorological conditions or physicochemical parameters of the soil. Positive matrix fractionation (PMF) indicated that, based on annual averages, PFOA-based products (40.2 %) were the major sources of PFASs in TSP, followed by PFOS-based products (25.2 %) and precursor degradation (34.6 %). The highest source contributor for PFASs in spring was precursor degradation (40.9 %), while in other three seasons, it was PFOA-based products (39.9 %, 40.9 % and 52.0 %, respectively). The mean atmospheric dry and wet deposition fluxes of PFASs were estimated at 4.38 ng·m-2·day-1 and 23.5 ng·m-2·day-1, respectively. The contribution of atmospheric deposition to the inventory mass of PFASs in the surface soil was 22.3 %. These findings fill a gap in knowledge regarding the processes and mechanisms of the occurrence, sources and atmospheric deposition of PFASs in the TGRR.

2.
Environ Pollut ; 355: 124216, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38797350

RESUMO

The Three Gorges Reservoir (TGR) is totally manmade, strongly influenced by anthropogenic activity, and lies on the upper reaches of Yangtze River. The periodic storage and discharge of water from the Three Gorges Dam could have altered the original air-plant/soil interactions of contaminants in TGR. Herein, paired atmospheric gas-particle, air-plant, and air-soil samples were collected to investigate the air-plant interaction and air-soil exchange of 16 USEPA priority polycyclic aromatic hydrocarbons (PAHs). The air-plant interaction based on McLachlan's framework to our datasets suggests that PAHs were absorbed via gaseous deposition that was restricted by the plant-gas dynamic equilibrium. The equilibrium indicates a dynamic balance between the gaseous phase and plant surface in PAH absorption. The main limiting factor influencing the PAH uptake was the plant species rather than the atmospheric PAH concentration. The air-soil exchange of PAHs exhibited a net volatilization flux of 16.71 ng/m2/d from the soil to the air based on annual average. There was more volatilization and less deposition in summer and more deposition and less volatilization in autumn and winter. The soil serves as a secondary source of atmospheric PAHs. As the first attempt on probing the multi-interface geochemical process of PAHs, this study highlights the influence of manual water level manipulation from the TGD and environmental factors (such as temperature, humidity, and soil properties) on the regional fate of PAHs in the TGR.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Solo , Hidrocarbonetos Policíclicos Aromáticos/análise , China , Poluentes Atmosféricos/análise , Solo/química , Poluentes do Solo/análise , Plantas/metabolismo , Poluentes Químicos da Água/análise , Humanos
3.
Environ Sci Process Impacts ; 26(5): 902-914, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38592781

RESUMO

Fifty-two consecutive PM2.5 samples from December 2021 to February 2022 (the whole winter) were collected in the center of Chongqing, a humid metropolitan city in China. These samples were analysed for the 16 USEPA priority polycyclic aromatic hydrocarbons (16 PAHs) to explore their composition and sources, and to assess their cancer risks to humans. The total concentrations of the 16 PAHs (ng m-3) ranged from 16.45 to 174.15, with an average of 59.35 ± 21.45. Positive matrix factorization (PMF) indicated that traffic emissions were the major source (42.4%), followed by coal combustion/industrial emission (31.3%) and petroleum leakage/evaporation (26.3%). The contribution from traffic emission to the 16 PAHs increased from 40.0% in the non-episode days to as high as 46.2% in the air quality episode during the sampling period. The population attributable fraction (PAF) indicates that when the unit relative risk (URR) is 4.49, the number of lung cancer cases per million individuals under PAH exposure is 27 for adults and 38 for seniors, respectively. It was 5 for adults and 7 for seniors, when the URR is 1.3. The average incremental lifetime cancer risk (ILCR) for children, adolescents, adults and seniors was 0.25 × 10-6, 0.23 × 10-6, 0.71 × 10-6, and 1.26 × 10-6, respectively. The results of these two models complemented each other well, and both implied acceptable PAH exposure levels. Individual genetic susceptibility and exposure time were identified as the most sensitive parameters. The selection and use of parameters in risk assessment should be further deepened in subsequent studies to enhance the reliability of the assessment results.


Assuntos
Poluentes Atmosféricos , Cidades , Monitoramento Ambiental , Material Particulado , Hidrocarbonetos Policíclicos Aromáticos , China , Hidrocarbonetos Policíclicos Aromáticos/análise , Medição de Risco , Material Particulado/análise , Poluentes Atmosféricos/análise , Humanos , Neoplasias/epidemiologia , Neoplasias/induzido quimicamente , Poluição do Ar/estatística & dados numéricos , Exposição Ambiental/estatística & dados numéricos , Exposição Ambiental/análise
4.
J Hazard Mater ; 458: 132006, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37453347

RESUMO

Public awareness of the potential environmental risks of shale gas extraction has increased in recent years. However, the status and environmental risks of potentially toxic metals (PTMs) in shale gas field soil remain unclear. A total of 96 topsoil samples were collected from the first shale gas exploitation area in China. The sources of nine PTMs in the soils were identified using positive matrix factorization and correlation analysis, and the ecological and human health risks of toxic metals from different sources under the two land use types were calculated. The results showed that mean pollution load index (PLI) values for farmland (1.18) and woodland (1.40) indicated moderate pollution, As, Cd and Ni were the most serious contaminants among all nine PTMs. The following four sources were identified: shale gas extraction activities (43.90%), nature sources (31.90%), agricultural and traffic activities (17.55%) and industrial activities (6.55%). For ecological risk, the mean ecological risk index (RI) values for farmlands (161.95) and woodlands (185.27) reaching considerable risk. The contribution ratio of shale gas extraction activities for farmlands and woodlands were 5.70% and 8.90%, respectively. Regarding human health risk, noncarcinogenic risks for adults in farmlands and woodlands were negligible. Industrial activities, agricultural and traffic activities were estimated to be the important sources of health risks. Overall, shale gas extraction activities had little impact on the ecological and human health risk. This study provides scientific evidence regarding the soil contamination potential of shale gas development activities.


Assuntos
Metais Pesados , Poluentes do Solo , Humanos , Solo , Monitoramento Ambiental/métodos , Gás Natural/análise , Metais Pesados/toxicidade , Metais Pesados/análise , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Medição de Risco , China
5.
Sci Total Environ ; 895: 165010, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37353018

RESUMO

Quaternary ammonium compounds (QACs) are a kind of biocides and surfactants widely used around the world and wastewater treatment systems were identified as its largest pool. QACs could significantly inhibit microbial activity in biological treatment. Aerobic granular sludge (AGS) is an emerging wastewater biological treatment technology with high efficiency and resistance, but it is still unclear if AGS system could tolerate QACs shock. In this study, a typical QAC (benzalkonium chloride (BACC12)) was selected to investigate its effect on AGS system. Results indicate that BAC could inhibit the pollutants removal performance of AGS system, including COD, NH4+-N and PO43- in the short term and the inhibition ratio had positive correlation with BAC concentration. However, AGS system could gradually adapt to the BAC stress and recover its original performance. BAC shock could destroy AGS structure by decreasing its particle size and finally leading to particle disintegration. Although AGS could secret more EPS to resist the stress, BAC still had significant inhibition on cell activity. Microbial community analysis illustrated that after high BAC concentration shock in short term, Thauera decreased significantly while Flavobacterium became the dominant genus. However, after the performance of AGS system recovered the dominant genus returned to Thauera and relevant denitrifiers Phaeodactylibacter, Nitrosomonas and Pseudofulvimonas also increased. The typical phosphorous removal microorganism Rubrivivax and Leadbetterella also showed the similar trend. The variation of denitrification and phosphorus removal microbial community was consistent with AGS system performance indicating the change of functional microorganism played key role in the AGS response to BAC stress.


Assuntos
Compostos de Benzalcônio , Esgotos , Esgotos/microbiologia , Reatores Biológicos/microbiologia , Nitrogênio , Águas Residuárias , Aerobiose , Eliminação de Resíduos Líquidos
6.
Ecotoxicol Environ Saf ; 251: 114552, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36652741

RESUMO

The processes of hydraulic fracturing to extract shale gas generate a large amount of wastewater, and the potential impacts of wastewater discharge after treatment are concerning. In this field study, we investigated the effects of the irrigation of paddy fields for 2 consecutive years by river water that has been influenced by shale gas wastewater discharge on soil physicochemical properties, microbial community structure and function, and rice grain quality. The results showed that conductivity, chloride and sulfate ions in paddy soils downstream of the outfall showed an accumulative trend after two years of irrigation, but these changes occurred on a small scale (<500 m). Two-year irrigation did not cause the accumulation of trace metals (barium, cadmium, chromium, copper, lead, strontium, zinc, nickel, and uranium) in soil and rice grains. Among all soil parameters, the accumulation of chloride ions was the most pronounced, with concentrations in the paddy soil at the discharge site 13.3 times higher than at the upstream control site. The use of influenced river water for paddy irrigation positively increased the soil microbial diversity, but these changes occurred after two years of irrigation and did not occur after one year of irrigation. Overall, the use of river water affected by shale gas wastewater discharge for agricultural irrigation has limited effects on agroecosystems over a short period. Nevertheless, the possible negative effects of contaminant accumulation in soil and rice caused by longer-term irrigation should be seriously considered.


Assuntos
Microbiota , Oryza , Poluentes do Solo , Solo/química , Águas Residuárias , Gás Natural , Cloretos , Irrigação Agrícola , Água , Oryza/química , Poluentes do Solo/análise
7.
Materials (Basel) ; 15(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36556741

RESUMO

Advanced oxidation processes (AOPs) based on peroxymonosulfate (PMS) activation have been developed as an ideal pathway for completely eradication of recalcitrant organic pollutants from water environment. Herein, the V-doped graphitic carbon nitride (g-C3N4) is rationally fabricated by one-step thermal polymerization method to activate PMS for contamination decontamination. The results demonstrate the V atoms are successfully integrated into the framework of g-C3N4, which can effectively improve light absorption intensity and enhance charge separation. The V-doped g-C3N4 displays superior catalytic performance for PMS activation. Moreover, the doping content has a great influence on the activation performances. The radical quenching experiments confirm •O2-, SO4•-, and h+ are the significant species in the catalytic reaction. This work would provide a feasible strategy to exploit efficient g-C3N4-based material for PMS activation.

8.
J Environ Manage ; 323: 116368, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36261973

RESUMO

The sulfate-reducing mediate microbial fuel cell (MFC) shows advantages in treating recalcitrant flowback water (FW) from shale gas extraction, but the stability under fluctuant concentrations of sulfate in FW remains unknown. Herein, we investigated the impact of fluctuant sulfate concentrations on the performance of FW treatment in MFCs. Sulfate concentration showed a significant role in the MFC treating FW, with a COD removal of 69.8 ± 9.7% and a peak power density of 2164 ± 396 mW/m3 under 247.5 mg/L sulfate, but only 39.1% and 1216 mW/m3 under 50 mg/L sulfate. The fluctuation of sulfate in a short time allowed to a stable performance, but a longtime intermittent decrease of feeding sulfate concentration significantly inhibited power generation to no more than 512 mW/m3. The sulfur cycling between sulfate and sulfide existed in the system, but the cycling rate became much lower after the longtime intermittent decrease, with resulting to the decreased power generation. Abundant sulfur-oxidizing bacteria (SOB) of Desulfuromonadaceae and Helicobacteraceae in the MFC stably feeding with 247.5 mg/L sulfate supported a high sulfur cycling rate. With the cooperation of abundant sulfate-reducing bacteria (SRB) of Desulfovibrionaceae (capable of producing electricity) on the anode and Desulfobacteraceae in anolyte, this sulfur cycling endowed the MFC with high sulfate tolerance and critically contributed to recalcitrant organics removal and power generation. However, much less SOB of Helicobacteraceae and Campylobacteraceae on the anode with high S0 accumulation on the surface after the longtime intermittent decrease of sulfate likely led to the low sulfur cycling rate. With also less SRB of Marinilabiaceae (capable of producing electricity) and Synergistaceae in the system, this low sulfur cycling rate thus hampered power generation. This research provides an important reference for the bioelectrochemical treatment of wastewater containing recalcitrant organics and sulfate.


Assuntos
Fontes de Energia Bioelétrica , Desulfovibrio , Purificação da Água , Fontes de Energia Bioelétrica/microbiologia , Águas Residuárias , Gás Natural , Enxofre/metabolismo , Sulfatos/metabolismo , Desulfovibrio/metabolismo , Bactérias/metabolismo , Sulfetos/metabolismo
9.
Environ Res ; 214(Pt 3): 114069, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35964668

RESUMO

Denitrifying anaerobic methane oxidation (DAMO) is a novel biological process which could decrease nitrogen pollution and methane emission simultaneously in wastewater treatment. Salinity as a key environmental factor has important effects on microbial community and activity, however, it remains unclear for DAMO microorganisms. In this study, response of the enrichment of DAMO archaea and bacteria to different salinity was investigated from the aspect of process and microbiology. The results showed that the increasing salinity from 0.14% to 25% evidently deteriorated DAMO process, with the average removal rate of nitrate and methane decreased from 1.91 mg N/(L·d) to 0.07 mg N/(L·d) and 3.22 µmol/d to 0.59 µmol/d, respectively. The observed IC50 value of salinity on the DAMO culture was 1.73%. Further microbial analyses at the gene level suggested that the relative abundance of DAMO archaea in the enrichment decreased to 46%, 39%, 38% and 33% of the initial value. However, DAMO bacteria suffered less impact with the relative abundance maintaining over 75% of the initial value (except 1% salinity). In functional genes of DAMO bacteria, pmoA, decreased gradually from 100% to 86%, 43%, 15% and 2%, while mcrA (DAMO archaea) maintained at 67%-97%. This difference probably indicated DAMO bacteria appeared functional inhibition prior to community inhibition, which was opposite for the DAMO archaea. Results above-mentioned concluded that, though the process of nitrate-dependent anaerobic methane oxidation was driven by the couple of DAMO archaea and bacteria, they individually featured different response to high salinity stress. These findings could be helpful for the application of DAMO-based process in high salinity wastewater treatment, and also the understanding to DAMO microorganisms.


Assuntos
Metano , Nitratos , Anaerobiose , Archaea/genética , Bactérias/genética , Oxirredução , Estresse Salino
10.
Water Res ; 222: 118869, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35870390

RESUMO

The potential threats of shale gas wastewater discharges to receiving waters is of great concern. In this study, chemical analyses and biomonitoring were performed three times in a small river that received treated wastewater over a two-year period. The results of chemical analyses showed that the concentrations of chloride, conductivity, barium, and strontium increased at the discharge site, but their concentrations decreased considerably farther downstream (≥500 m). The concentrations of toxic organic compounds (16 US EPA priority polycyclic aromatic hydrocarbons and 6 priority phthalates), trace metals (strontium, arsenic, zinc, copper, chromium, lead, cadmium, nickel, and neodymium), and natural radionuclides (40K, 238U, 226Ra, and 232Th) were comparable to the corresponding background values or did not exhibit obvious accumulation in sediments with continued discharge. Morphological and environmental DNA approaches were used to reveal the potential effects of wastewater discharges on aquatic ecosystems. The results showed that the community structure of benthic invertebrates was not altered by the long-term discharges of shale gas wastewaters. However, the biodiversity indices (richness and Shannon) from the two approaches showed inconsistencies, which were caused by multiple reasons, and that substrates had a strong influence on the morphological biodiversity indices. A multimetric index was proposed to further analyze morphological and environmental DNA data, and the results showed no significant difference between the upstream and downstream sites. Generally, the chemical and biological results both demonstrated that the discharges of shale gas wastewaters had limited impacts on river ecosystems within two years.


Assuntos
DNA Ambiental , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental , Gás Natural , Compostos Orgânicos , Estrôncio/análise , Águas Residuárias/química , Poluentes Químicos da Água/química
11.
Chemosphere ; 303(Pt 2): 135128, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35636600

RESUMO

Fracturing flowback water (FFW) from the shale gas exploitation resulted in environmental burden. FFW could be treated by a microbial fuel cell (MFC), but the challenge for the precipitation of ultrafine particles due to the supersaturation of sulfide remains to be addressed. Herein, we reported a Dual-anode MFC (DA-MFC), in which the FFW remediation and elemental sulfur recovery could be performed by regulating potential of the electrochemical anode. The removal of COD and sulfate was 70.0 ± 1.2% and 75.5 ± 0.4% in DA-MFCs by controlling potential at -0.1 V (vs. SHE) for 36 h. Meanwhile, the efficiency of copper removal and elemental sulfur recovery was up to 99.9 ± 0.5% and 75.6 ± 1.8%, respectively, which was attributed by the electrochemical oxidation of sulfide to elemental sulfur. Trichococcus, unclassified Prolixibacteraceae and unclassified Cloacimonadales enriched on the bioanodes of DA-MFCs were sensitive to potential regulation and favorable for degrading complex organics. UnclassifiedSynergistaceae, Desulfobacterium, Desulfovibrio, unclassified bacteria and Syner-01 was conducive to sulfate removal. Moreover, the elimination of Azoarcus due to potential regulation suppressed the biological oxidation of sulfide. Thus, organics were efficiently removed through the biological oxidation and sulfate reduction on bioanode, the copper ions were combined with the sulfide from sulfate reduction to precipitate effectively, and then the excessive sulfide in the system was converted into elemental sulfur attached on the electrochemical anode. The results provide new sights on bio-electrochemical technology for treatment of wastewater containing complex organics, heavy metals and sulfates.


Assuntos
Fontes de Energia Bioelétrica , Fontes de Energia Bioelétrica/microbiologia , Cobre , Eletrodos , Oxirredução , Sulfatos , Sulfetos , Enxofre , Águas Residuárias , Água
12.
Environ Pollut ; 305: 119301, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35429592

RESUMO

The widely detected pyrene (PYR) is prone to accumulate and pose risks to the soil ecosystem. In this study, an aerobic closed microcosm was constructed to assess the effects of PYR at the environmental concentration (12.09 mg kg-1) on the structure, interactions, and metabolism of carbon sources of soil microbial communities. The results found that half-life of PYR was 37 d and its aerobic biodegradation was mainly implemented by both Gram-negative and Gram-positive bacteria as revealed by the quantitative results. High-throughput sequencing based on 16 S rRNA and ITS genes showed that PYR exposure interfered more significantly with the diversity and abundance of the bacterial community than that of the fungal community. For bacteria, rare species were sensitive to PYR, while Gemmatimonadota, Gaiellales, and Planococcaceae involved in organic pollutants detoxification and degradation were tolerant of PYR stress. Co-occurrence network analysis demonstrated that PYR enhanced the intraspecific cooperation within the bacterial community and altered the patterns of trophic interaction in the fungal community. Furthermore, the keystone taxa and their topological roles were altered, potentially inducing functionality changes. Function annotation suggested PYR inhibited the nitrogen fixation and ammonia oxidation processes but stimulated methylotrophy and methanol oxidation, especially on day 7. For the metabolism, microbial communities accelerated the metabolism of nitrogenous carbon sources (e.g. amine) to meet the physiological needs under PYR stress. This study clarifies the impacts of PYR on the structure, metabolism, and potential N and C cycling functions of soil microbial communities, deepening the knowledge of the environmental risks of PYR.


Assuntos
Microbiota , Solo , Bactérias/metabolismo , Carbono/análise , Pirenos/análise , Solo/química , Microbiologia do Solo
13.
Environ Res ; 210: 112897, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35151661

RESUMO

Chemical structure of azo dyes molecules showed significant influence on their decolorization rate, while the structure-activity relationship between chemical structure and their reduction decolorization rate is not fully understand. In this study, we found that azo dye molecule with closer position for electron-withdrawing substituent to azo bond resulted in faster chemical and biotic reduction rate with or without presence of carbon nanotubes (CNTs), while electron-repulsive substituent closer to azo bond leading to slower azo dye chemical and biotic reduction rate no matter with or without presence of CNTs. Additionally, galvanic cell experiments implied that electron transfer process may play important roles for both chemical and biological reduction decolorization of azo dyes, and CV results indicated that the higher (azo bond breakage) reduction wave potential corresponding to a faster azo dye chemical decolorization reaction. Finally, the results of Lowest Unoccupied Molecular Orbital (LUMO) energy established that lower LUMO energy for azo dye corresponding to a faster chemical decolorization reaction. This study not only offer systematized relationships between structure property of azo dye and their decolorization rate, but also provide a universal and propagable reduction rules.


Assuntos
Compostos Azo , Nanotubos de Carbono , Compostos Azo/química , Corantes/química , Elétrons , Relação Estrutura-Atividade
14.
Environ Res ; 209: 112815, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35093311

RESUMO

The widespread application of quaternary ammonium compounds (QAC) has posed a serious hazard to the environment and human being, and high concentration of Cl- in QAC wastewater may further increase the difficulty of pollutants elimination. In this study, such a QAC wastewater under high salinity conditions was chosen as the target, the prepared Ti/(RuxIry)O2 anode exhibited favorable catalytic performance for the oxidation and mineralization of QAC under high salinity conditions. Increasing the Ru/Ir ratio of Ti-based electrode coating also slightly promoted the inner catalytic capacity. The combination of electron paramagnetic resonance (EPR) and quenching experiments indicates that 1O2 served as a main reactive specie in the Ti/(RuxIry)O2 electrooxidation system. The increase of pH could decrease the removal efficiency of QAC for the reduced 1O2 yield, and the rise of Cl- concentration could favor the QAC oxidation, and Cl- was a better electrolyte to promote the oxidation of organic contaminants when compared to Na2SO4 or Na2CO3. Additionally, the conversion pathway of the model pollutant was tentatively investigated, the results demonstrated that there were almost no halogenated final products residual by electrocatalytic oxidation with Ti/(RuxIry)O2 anode. This study not only elucidate the reaction mechanism of Ti/(RuxIry)O2 anode electrocatalytic oxidation of high salinity QAC wastewater, but also may provide an efficacious and eco-friendly method for the treatment of high salinity QAC wastewater.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Eletrodos , Humanos , Oxirredução , Compostos de Amônio Quaternário , Salinidade , Oxigênio Singlete , Titânio/química , Águas Residuárias/química , Poluentes Químicos da Água/análise
15.
Chemosphere ; 286(Pt 2): 131709, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34340117

RESUMO

Phenanthrene (PHE) is frequently detected in worldwide soils. But it is still not clear that how the microbial community succession happens and the nitrogen-cycling processes alter during PHE degradation. In this study, the temporal changes of soil microbial community composition and nitrogen-cycling processes during the biodegradation of PHE (12 µg g-1) were explored. The results showed that the biodegradation of PHE followed the second-order kinetics with a half-life of 7 days. QPCR results demonstrated that the bacteria numbers increased by 67.1%-194.7% with PHE degradation, whereas, no significant change was observed in fungi numbers. Thus, high-throughput sequencing based on 16 S rRNA was conducted and showed that the abundances of Methylotenera, Comamonadaceae, and Nocardioides involved in PHE degradation and denitrification were significantly increased, while those of nitrogen-metabolism-related genera such as Nitrososphaeraceae, Nitrospira, Gemmatimonadacea were decreased in PHE-treated soil. Co-occurrence network analysis suggested that more complex interrelations were constructed, and Proteobacteria instead of Acidobacteriota formed intimate associations with other microbes in responding to PHE exposure. Additionally, the abundances of nifH and narG were significantly up-regulated in PHE-treated soil, while that of amoA especially AOAamoA was down-regulated. Finally, correlation analysis found several potential microbes (Methylotenera, Comamonadaceae, and Agromyces) that could couple PHE degradation and nitrogen transformation. This study confirmed that PHE could alter microbial community structure, change the native bacterial network, and disturb nitrogen-cycling processes.


Assuntos
Microbiota , Fenantrenos , Nitrogênio , Ciclo do Nitrogênio , Solo , Microbiologia do Solo
16.
J Hazard Mater ; 424(Pt D): 127649, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34740504

RESUMO

As hydraulic fracturing (HF) practices keep expanding in China, a comparative understanding of biological characteristics of flowback and produced waters (FPW) and sludge in impoundments for FPW reserve will help propose appropriate treatment strategies. Therefore, in this study, the microbial communities and functions in impoundments that collected wastewaters from dozens of wells were characterized. The results showed that microbial richness and diversity were significantly increased in sludge compared with those in FPW. The vast majority of microorganisms found in FPW and sludge are organic degraders, providing the possibility of using these indigenous microorganisms to biodegrade organic compounds. Our laboratory findings first show that wastewater pretreatment using these microorganisms was effective, and organic compounds in FPW from different shale formations were removed by 35-68% within 72 h in a wide temperature range (8 - 30 â„ƒ). Meanwhile, highly toxic compounds such as phthalate esters (PAEs), polycyclic aromatic hydrocarbons (PAHs), and petroleum hydrocarbons were effectively eliminated in reactors. The main microorganisms, key functional genes, and putative pathways for alkanes, PAHs, and PAEs degradation were also identified.


Assuntos
Fraturamento Hidráulico , Microbiota , Poluentes Químicos da Água , Gás Natural , Esgotos , Águas Residuárias , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
17.
Sci Total Environ ; 811: 152250, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-34921872

RESUMO

Due to the growing hydraulic fracturing (HF) practices in China, the environmental risks of pollutants in flowback and produced waters (FPW) and sludge in impoundments for FPW reserves have drawn increasing attention. In this context, we first characterized the comparative geochemical characteristics of the FPW and the sludge in impoundments that collected FPW from 75 shale gas wells, and then the risks associated with the pollutants were assessed. The results demonstrated that four organic compounds detected in the FPW, naphthalene, acenaphthene, dibutyl phthalate, and bis(2-ethylhexyl)phthalate, were potential threats to surface waters. The concentrations of trace metals (copper, cadmium, manganese, chromium, nickel, zinc, arsenic, and lead) in the FPW and sludge were low; however, those of iron, barium, and strontium were high. The accumulation of chromium, nickel, zinc, and lead in the sludge became more evident as the depth increased. The environmental risks from heavy metals in the one-year precipitated sludge were comparable to those reported in the environment. However, the radium equivalent activities were 10-41 times higher than the recommended value for human health safety, indicating potential radiation risks. Although hydrophobic organic compounds, such as high-molecular-weight polycyclic aromatic hydrocarbons (PAHs), phthalate esters (PAEs), benzene, ethylbenzene, toluene, and xylene (BTEX), tended to accumulate in the sludge, their environmental risks were within tolerable ranges after proper treatment. Multiple antibiotic resistance genes (ARGs), such as those for macrolide, lincosamide, streptogramin (MLS), tetracycline, and multidrug resistances, were detected in the shale gas wastewaters and sludge. Therefore, the environmental risks of these emerging pollutants upon being discharged or leaked into surface waters require further attention.


Assuntos
Poluentes Ambientais , Fraturamento Hidráulico , Poluentes Químicos da Água , Humanos , Medição de Risco , Esgotos , Águas Residuárias , Poluentes Químicos da Água/análise
18.
Nanomaterials (Basel) ; 11(11)2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34835894

RESUMO

The combination of peroxymonosulfate (PMS) activation and photocatalysis has proven to be effective for organic contaminants treatment. However, the construction of an efficient catalytic material is an important challenge. Herein, novel Bi2WO6/BiOCl heterojunction nanocomposites were successfully designed and fabricated using a facile and effective strategy for bisphenol A (BPA) photodegradation with PMS activation. The well-designed heterojunction with improvement of the contact area and interface microstructure was obtained through in situ growth of the Bi2WO6 on the surface of BiOCl. The Bi2WO6/BiOCl nanocomposites exhibit excellent catalytic performance in PMS activation for BPA degradation under visible light irradiation. A possible photocatalytic reaction mechanism was systematically revealed. The excellent catalytic performance is mainly attributed to the strong interaction between Bi2WO6 and BiOCl, resulting in an enhanced photoabsorption and a more efficient interfacial charge separation and transfer. This paper provides a novel strategy to design efficient catalytic materials for organic contaminants remediation with PMS activation.

19.
Ecotoxicol Environ Saf ; 226: 112830, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34592529

RESUMO

Phthalic acid esters (PAEs) are predominant hazardous substances and endocrine-disrupting compounds to be controlled in soil. The degradation behaviors of PAEs in soil had been long term concerned. Thus, the degradation rate (K) is important for assessing theexposure risk and is of great significance in evaluating the ecological risk of PAEs in soil environment. But by far, quantitative structure activity relationship (QSAR) models for PAEs degradation have rarely been considered in soil environment. In this study, quantum chemical parameters were considered along with soil properties as two kinds of descriptors in QSAR model. A total of 32 logk of PAEs were collected from reference and experiment. Degradation kinetics in soils were determined by pseudo-first order kinetic models. The residual concentration of PAEs in Udic ferrosols and Aquic cambisols suggesting a potential expose risks of PAEs to ecosystem in soil. The QSAR model between logk and quantum chemical parameters revealed that EHOMO and qC- are two predominant factors in determining logk value. Furthermore,our study further indicated that soil organic matter (SOM) as new predictor contributes more to predict logk values of PAEs during degradation process than pH. Results from this study make a new contribution for methods to predict the degradation of PAEs in soil environment and highlight the potential to evaluate the environmental risks of degradation of PAEs.


Assuntos
Ácidos Ftálicos , Poluentes do Solo , China , Dibutilftalato , Ecossistema , Ésteres , Relação Quantitativa Estrutura-Atividade , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
20.
Sci Total Environ ; 798: 149187, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34340077

RESUMO

Shale gas is a promising unconventional natural gas in the world, however the produced flowback water have severe challenges to surrounding water resource. Conventional reuse technology uses bactericide to control corrosive microorganism, which might bring uncontrolled drug resistance and other secondary pollution. In this study, storage strategy of flowback water was designed as a pre-control stage to decline corrosive microorganism. Dissolved oxygen and temperature were chosen as two key parameters based on microbial physiological and biochemical characteristics. Results showed that under the cross effect of temperature and dissolved oxygen, 15 °C and anaerobic condition had the optimal microorganism control effectiveness. Microorganism amount and live/dead cell ratio decreased by 63.7% and 68.74% respectively compared raw water. COD removal efficiency reduced to only 20%, indicating that the microorganism activity was extremely inhibited. However, microorganism in flowback water was more sensitive to dissolved oxygen compared to temperature. Redundancy analysis confirmed that dissolved oxygen contribution was as high as 91.5% while temperature was not significant (p > 0.05), the contribution rate was only 8.5%. Thermococcus, Archaeoglobus, Thermovirga, Thermotoga and Moorella were the dominated thermophilic, anaerobic and sulfate reduction or metal corrosion microorganism in flowback water, so all these identified microorganisms were control targets. Importantly, all the target microorganisms detected in flowback water were declined after different storage strategies. This study provides an effective storage strategy for flowback water to inhibit the microbial amount and activity without biocides addition, which could help promote the green exploitation of shale gas.


Assuntos
Gás Natural , Poluentes Químicos da Água , Temperatura , Águas Residuárias , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA