RESUMO
This study demonstrated the functions and molecular mechanisms of the IL-33/ST2 axis in experimental optic neuropathy. C57BL/6J mice were used to establish an optic nerve crush (ONC) model. ONC mice were administered with IL-33 intraperitoneal injection, with PBS vehicle as control. Immunofluorescence, quantitative RT-PCR, and western blot techniques were utilized to assess the expression of the IL-33/ST2 axis. The electroretinography (ERG), optical coherence tomography (OCT), H&E, and luxol fast blue were used to assess the structural and functional changes. Western blot was employed to detect the activation of the mTOR/S6 pathway. The IL-33 expression level in the inner nuclear layer of the retina in ONC mice reached its peak on day 3, accompanied by a significant increase in IL-33 receptor ST2 expression. IL-33 treatment promoted the survival of retinal ganglion cells, restored the thickness of inner retina layer (IRL), alleviated the demyelination of the optic nerve, and recovered the decreased amplitude of b-wave in ONC mice. Furthermore, administration of IL-33 activated the mTOR/S6 signaling pathway in RGCs, which was significantly suppressed in the ONC condition. This study indicated that boosting the IL-33/ST2/mTOR/S6 pathway can protect against structural and functional damage to the retina and optic nerve induced by ONC. As a result, the IL-33/ST2 axis holds potential as a therapeutic option for treating various optic neuropathies.
RESUMO
Gut microbiotas have important impacts on host health, reproductive success, and survival. While extensive research in mammals has identified the exogenous (e.g. environment) and endogenous (e.g. phylogeny, sex, and age) factors that shape the gut microbiota composition and functionality, yet avian systems remain comparatively less understood. Shorebirds, characterized by a well-resolved phylogeny and diverse life-history traits, present an ideal model for dissecting the factors modulating gut microbiota dynamics. Here, we provide an insight into the composition of gut microbiota in two high-altitude (ca. 3200 m above sea level) breeding populations of Kentish plover (Charadrius alexandrinus) and Tibetan sand plover (Charadrius altrifrons) in the Qinghai-Tibetan Plateau, China. By analysing faecal bacterial communities using 16S rRNA sequencing technology, we find a convergence in gut microbial communities between the two species, dominated by Firmicutes, Proteobacteria, and Bacteroidetes. This suggests that the shared breeding environment potentially acts as a significant determinant shaping their gut microbiota. We also show sex- and age-specific patterns of gut microbiota: female adults maintain a higher diversity than males, and juveniles are enriched in Rhizobiaceae and Exiguobacterium due to their vegetative food resource. Our study not only provides a comprehensive descriptive information for future investigations on the diversity, functionality, and determinants of avian microbiomes, but also underscores the importance of microbial communities in broader ecological contexts.
RESUMO
The age-associated decline in immunity manifests as imbalanced adaptive and innate immune cells, which originate from the aging of the stem cells that sustain their regeneration. Aging variation across individuals is well recognized, but its mechanism remains unclear. Here, we used high-throughput single-cell technologies to compare mice of the same chronological age that exhibited early or delayed immune aging phenotypes. We found that some hematopoietic stem cells (HSCs) in early aging mice upregulated genes related to aging, myeloid differentiation, and stem cell proliferation. Delayed aging was instead associated with genes involved in stem cell regulation and the response to external signals. These molecular changes align with shifts in HSC function. We found that the lineage biases of 30% to 40% of the HSC clones shifted with age. Moreover, their lineage biases shifted in opposite directions in mice exhibiting an early or delayed aging phenotype. In early aging mice, the HSC lineage bias shifted toward the myeloid lineage, driving the aging phenotype. In delayed aging mice, HSC lineage bias shifted toward the lymphoid lineage, effectively counteracting aging progression. Furthermore, the anti-aging HSC clones did not increase lymphoid production but instead decreased myeloid production. Additionally, we systematically quantified the frequency of various changes in HSC differentiation and their roles in driving the immune aging phenotype. Taken together, our findings suggest that temporal variation in the aging of immune cell regeneration among individuals primarily arises from differences in the myelopoiesis of a distinct subset of HSCs. Therefore, interventions to delay aging may be possible by targeting a subset of stem cells.
RESUMO
Antagonistic bacterial strains from Bacillus spp. have been widely studied and utilized in the biocontrol of phytopathogens and the promotion of plant growth, but their impacts on the rhizosphere microecology when applied to crop plants are unclear. Herein, the effects of applying the antagonistic bacterium Bacillus subtilis S1 as a biofertilizer on the rhizosphere microecology of cucumbers were investigated. In a pot experiment on cucumber seedlings inoculated with S1, 3124 bacterial operational taxonomic units (OTUs) were obtained from the rhizosphere soils using high-throughput sequencing of 16S rRNA gene amplicons, and the most abundant phylum was Proteobacteria that accounted for 49.48% in the bacterial community. S1 treatment significantly reduced the abundances of soil bacterial taxa during a period of approximately 30 days but did not affect bacterial diversity in the rhizosphere soils of cucumbers. The enzymatic activities of soil nitrite reductase (S-Nir) and dehydrogenase (S-DHA) were significantly increased after S1 fertilization. However, the activities of soil urease (S-UE), cellulase (S-CL), and sucrase (S-SC) were significantly reduced compared to the control group. Additionally, the ammonium- and nitrate-nitrogen contents of S1-treated soil samples were significantly lower than those of the control group. S1 fertilization reshaped the rhizosphere soil bacterial community of cucumber plants. The S-CL activity and nitrate-nitrogen content in rhizosphere soil affected by S1 inoculation play important roles in altering the abundance of rhizosphere soil microbiota.
Assuntos
Bacillus subtilis , Bactérias , Cucumis sativus , Nitrogênio , Rizosfera , Microbiologia do Solo , Cucumis sativus/microbiologia , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Nitrogênio/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Bactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Fertilizantes/análise , Solo/química , Microbiota , FilogeniaRESUMO
Objective: This study aimed to explore the relationship between climatic parameters and the daily cases of Bell's palsy (BP) among hospital outpatients, providing ecological evidence for understanding BP etiology and prevention. Methods: Retrospective analysis was conducted on data from 2187 BP patients who attended Kunshan First People's Hospital Outpatient Clinic from January 1, 2020, to December 31, 2022. Meteorological data, including temperature, relative humidity, precipitation, wind speed, sunshine duration, and atmospheric pressure, were collected and combined with daily BP case records. Additionally, air quality index was used as a covariate. Results: The number of new BP cases among outpatients showed a negative correlation with average daily temperature. A nonlinear relationship between daily average temperature and BP cases was observed through the generalized additive model (GAM). A significant negative correlation was identified between daily average temperature and BP cases, with inflection points at temperatures above 4.2°C, suggesting a potential decrease in BP risk with temperature rise beyond this threshold. Conclusion: This study provides ecological evidence of a link between climatic factors and BP occurrence. Temperature demonstrated a significant nonlinear negative correlation with daily BP incidence, highlighting temperature and cold exposure as key targets for BP prevention in Kunshan.
RESUMO
OBJECTIVE: To identify the influencing factors of gastrointestinal bleeding in children with abdominal-type Henoch-Schonlein purpura (HSP) and to assess the diagnostic value of PLR (platelet-to-lymphocyte ratio). METHODS: We retrospectively analyzed the medical records of 112 children with abdominal HSP admitted to Northwest Women's and Children's Hospital from April 2021 to May 2023. Among them, 62 cases with gastrointestinal bleeding constituted the bleeding group, while the other 50 cases without gastrointestinal bleeding comprised the non-bleeding group. We compared PLR and related routine blood indicators between the two groups. Univariate and multivariate logistic regression analyses were performed to identify independent risk factors for gastrointestinal bleeding. HSP children with gastrointestinal bleeding were further categorized based on treatment efficacy, and the predictive value of PLR for treatment efficacy was analyzed. RESULTS: The observation group exhibited significantly higher levels of WBC, NEU, PLT, MPV, C-reactive protein, and PLR, along with lower lymphocyte levels compared to the control group (all P < 0.05). Univariate analysis revealed associations between symptom onset, abdominal pain, vomiting, levels of WBC, NEU, LYM, PLT, PLR, C-reactive protein and gastrointestinal bleeding (all P < 0.05). Multivariate logistic analysis identified onset with abdominal pain, high WBC values, and elevated PLR ratios as risk factors for gastrointestinal bleeding. The ROC curve demonstrated an AUC of 0.914 for PLR in predicting gastrointestinal bleeding. Additionally, PLR was significantly lower in the good efficacy group compared to the poor efficacy group. The AUC of PLR in predicting treatment efficacy was 0.804, indicating high predictive value. CONCLUSION: Elevated PLR may serve as a potential risk factor for gastrointestinal bleeding in children with abdominal-type allergic purpura. Monitoring changes in PLR could aid in diagnosis and improvements in treatment for this condition.
RESUMO
This study aims to elucidate the pivotal role of aldolase A (ALDOA) in retinoblastoma (RB) and evaluate the potential of the ALDOA inhibitor itaconate in impeding RB progression. Utilizing single-cell RNA sequencing, ALDOA consistently exhibits overexpression across diverse cell types, particularly in cone precursor cells, retinoma-like cells, and retinoblastoma-like cells. This heightened expression is validated in RB tissues and cell lines. ALDOA knockdown significantly diminishes RB cell viability, impedes colony formation, and induces notable metabolic alterations. RNA-seq analysis identifies SUSD2, ARHGAP27, and CLK2 as downstream genes associated with ALDOA. The application of itaconate demonstrates efficacy in inhibiting RB cell proliferation, validated through in vitro and in vivo models. This study emphasizes ALDOA as a promising target for innovative RB therapies, with potential implications for altering tumor energy metabolism.
RESUMO
Introduction: In August 2021, an outbreak of Feline Panleukopenia Virus (FPV) was observed in four 3-month-old Pallas' cats at Xining Wildlife Park. Despite timely intervention, the Pallas'cat cubs continued to experience clinical symptoms including diarrhea, seizures, and decreased white blood cell count, and all four cats died. Methods: FPV clinical suspicions were initially confirmed by positive Polymerase Chain Reaction (PCR) testing. Pathological and immunohistochemical examinations (IHC) were performed on some organs, and the results showed that, encephalitis, viral enteritis, and splenitis occurred. Results: The virus replicates extensively in the cytoplasm of lymphocytes and macrophages in the lamina propria of the small intestine mucosa. A strain of FPV was successfully isolated and culture in CRFK cells. Through molecular identification, sequence analysis, and phylogenetic analysis of the VP2 gene in this strain, we have revealed the presence of a novel synonymous mutation. From July to December 2021, surveillance on stray cats and susceptible wildlife at Xining Wildlife Park indicated widespread FPV transmission. Discussion: The findings highlight the urgent need for ongoing epidemiological monitoring and active disinfection measures to prevent FPV transmission in wildlife parks.
RESUMO
Background: Glaucoma (GLAU), Age-related Macular Degeneration (AMD), Retinal Vein Occlusion (RVO), and Diabetic Retinopathy (DR) are common blinding ophthalmic diseases worldwide. Purpose: This approach is expected to enhance the early detection and treatment of common blinding ophthalmic diseases, contributing to the reduction of individual and economic burdens associated with these conditions. Methods: We propose an effective deep-learning pipeline that combine both segmentation model and classification model for diagnosis and grading of four common blinding ophthalmic diseases and normal retinal fundus. Results: In total, 102,786 fundus images of 75,682 individuals were used for training validation and external validation purposes. We test our model on internal validation data set, the micro Area Under the Receiver Operating Characteristic curve (AUROC) of which reached 0.995. Then, we fine-tuned the diagnosis model to classify each of the four disease into early and late stage, respectively, which achieved AUROCs of 0.597 (GL), 0.877 (AMD), 0.972 (RVO), and 0.961 (DR) respectively. To test the generalization of our model, we conducted two external validation experiments on Neimeng and Guangxi cohort, all of which maintained high accuracy. Conclusion: Our algorithm demonstrates accurate artificial intelligence diagnosis pipeline for common blinding ophthalmic diseases based on Lesion-Focused fundus that overcomes the low-accuracy of the traditional classification method that based on raw retinal images, which has good generalization ability on diverse cases in different regions.
RESUMO
Background and objective: The B19 virus is mainly transmitted through the respiratory tract; however, studies have shown that it can also be transmitted through blood transfusions or plasma products. This study investigated B19V antibodies, DNA, and gene typing in blood donors at a central blood station in China to evaluate the status of B19V infection. Materials and methods: A total of 7728 samples from Suzhou Blood Center were collected from July 2022 to April 2023. Samples were detected for the B19V DNA using real-time polymerase chain reaction. Furthermore, 893 selected samples were screened for the seroprevalence of B19V antibodies using enzyme-linked immunosorbent assay. The NS1-VP1u fragment of the B19V DNA-positive samples was amplified using nested PCR, and the sequences were determined. A B19V phylogenetic tree was constructed using neighborhood joint and maximum parsimony methods to discriminate genotypes using the NS1-VP1u sequences. Results: The percentages of IgG, IgM, and DNA were 19.4 %, 1.9 %, and 0.09 %, respectively. IgG positivity increased with age, and there was a significant difference among the blood groups. The IgG levels of repeat donors were greater than those of first-time donors. There were no apparent differences in the IgM levels in all the participants. Genotyping revealed that the B19 genotype was 1. Conclusions: The prevalence of B19V antibodies and DNA was lower in these areas than in rest of China, indicating that the risk of B19V transmission via transfusion may be relatively low. However, during transfusion, particular attention should be paid to the B19V-susceptible populations, especially those in high-risk groups.
RESUMO
Land use changes have profoundly influenced global environmental dynamics. The Yellow River (YR), as the world's fifth-longest river, significantly contributes to regional social and economic growth due to its extensive drainage area, making it a key global player. To ensure ecological stability and coordinate land use demand, modeling the future land allocation patterns of the Yellow River Basin (YRB) will assist in striking a balance between land use functions and the optimization of its spatial design, particularly in water and sand management. In this research, we used a multi-objective genetic algorithm (MOGA) with the PLUS model to simulate several different futures for the YRB's land use between 1990 and 2020 and predict its spatial pattern in 2030. An analysis of the spatiotemporal evolution of land use changes in the YRB indicated that construction land expansion is the primary driver of landscape pattern and structure changes and ecological degradation, with climate change also contributing to the expansion of the watershed area. On the other hand, the multi-scenario simulation, constrained by specific targets, revealed that economic development was mainly reflected in land expansion for construction. At the same time, grassland and woodland were essential pillars to support the region's ecological health, and increasing the development of unused land emerged as a potential pathway towards sustainable development in the region. This study could be used as a template for the long-term growth of other large river basins by elucidating the impacts of human activities on land use and rationalizing land resource allocation under various policy constraints.
Assuntos
Conservação dos Recursos Naturais , Rios , Modelos Teóricos , Mudança Climática , ChinaRESUMO
To analyze the current status of "pseudo" unplanned endotracheal extubation in ICU patients in China's tertiary hospitals and to provide a reference for improving the quality of medical care. Through the National Nursing Quality Data Platform, unplanned endotracheal extubation data reported by ICUs in China's tertiary hospitals from 2019 to 2022 were analyzed. The situation of reported hospitals, causes, and the current status of "pseudo" unplanned endotracheal extubation in ICU patients was analyzed. The indicator of unplanned endotracheal extubation in ICUs of China's tertiary hospitals is mainly from first-class tertiary hospitals (74.9%), most of which are self-extractions by patients (74.6%). The proportion of "pseudo" unplanned endotracheal extubation is 45.1%. "Pseudo" unplanned endotracheal extubation is common in the ICUs of China's tertiary hospitals. As such, management blind spots deserve attention from managers and clinical staff.
Assuntos
Extubação , Unidades de Terapia Intensiva , Centros de Atenção Terciária , Humanos , China , Intubação Intratraqueal/estatística & dados numéricos , Masculino , FemininoRESUMO
Tracking stem cell fate transition is crucial for understanding their development and optimizing biomanufacturing. Destructive single-cell methods provide a pseudotemporal landscape of stem cell differentiation but cannot monitor stem cell fate in real time. We established a metabolic optical metric using label-free fluorescence lifetime imaging microscopy (FLIM), feature extraction and machine learning-assisted analysis, for real-time cell fate tracking. From a library of 205 metabolic optical biomarker (MOB) features, we identified 56 associated with hematopoietic stem cell (HSC) differentiation. These features collectively describe HSC fate transition and detect its bifurcate lineage choice. We further derived a MOB score measuring the "metabolic stemness" of single cells and distinguishing their division patterns. This score reveals a distinct role of asymmetric division in rescuing stem cells with compromised metabolic stemness and a unique mechanism of PI3K inhibition in promoting ex vivo HSC maintenance. MOB profiling is a powerful tool for tracking stem cell fate transition and improving their biomanufacturing from a single-cell perspective.
Assuntos
Biomarcadores , Diferenciação Celular , Linhagem da Célula , Células-Tronco Hematopoéticas , Biomarcadores/metabolismo , Animais , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Camundongos , Rastreamento de Células/métodos , Análise de Célula Única/métodos , Microscopia de Fluorescência/métodos , HumanosRESUMO
BACKGROUND: Tumors exhibit metabolic heterogeneity, influencing cancer progression. However, understanding metabolic diversity in retinoblastoma (RB), the primary intraocular malignancy in children, remains limited. METHODS: The metabolic landscape of RB was constructed based on single-cell transcriptomic sequencing from 11 RB and 5 retina samples. Various analyses were conducted, including assessing overall metabolic activity, metabolic heterogeneity, and the correlation between hypoxia and metabolic pathways. Additionally, the expression pattern of the monocarboxylate transporter (MCT) family in different cell clusters was examined. Validation assays of MCT1 expression and function in RB cell lines were performed. The therapeutic potential of targeting MCT1 was evaluated using an orthotopic xenograft model. A cohort of 47 RB patients was analyzed to evaluate the relationship between MCT1 expression and tumor invasion. RESULTS: Distinct metabolic patterns in RB cells, notably increased glycolysis, were identified. This metabolic heterogeneity correlated closely with hypoxia. MCT1 emerged as the primary monocarboxylate transporter in RB cells. Disrupting MCT1 altered cell viability and energy metabolism. In vivo studies using the MCT1 inhibitor AZD3965 effectively suppressed RB tumor growth. Additionally, a correlation between MCT1 expression and optic nerve invasion in RB samples suggested prognostic implications. CONCLUSIONS: This study enhances our understanding of RB metabolic characteristics at the single-cell level, highlighting the significance of MCT1 in RB pathogenesis. Targeting MCT1 holds promise as a therapeutic strategy for combating RB, with potential prognostic implications.
RESUMO
This paper employs a unique data set to analyze the trading behavior of wealthy individual investors across Mainland China and their impact on Chinese stock markets' tail risk. Results show that the wealthy individual investors' trading behavior can explain Chinese stock markets' tail risk, and the daily investment portfolios based on the network density of wealthy individual investors have significant excess returns. This paper also investigates the determinants of wealthy individual investors' trading behavior with the social network method and the spatial econometric model, and reveals that wealthy individuals benefit from the spillover effect of their trading behavior through the investor networks. The results of this paper not only reveal micro evidence for the formation mechanism of asset prices, but also provide insight into the behavior of wealthy individual investors.
Assuntos
Investimentos em Saúde , Investimentos em Saúde/economia , China , Humanos , Modelos Econômicos , Comércio/economia , Modelos EconométricosRESUMO
CONTEXT: The mechanisms of Traditional Chinese Medicine (TCM) Guizhi-Gancao Decoction (GGD) remain unknown. OBJECTIVE: This study explores the mechanisms of GGD against cardiac hypertrophy. MATERIALS AND METHODS: Network pharmacology analysis was carried out to identify the potential targets of GGD. In vivo experiments, C57BL/6J mice were divided into Con, phenylephrine (PE, 10 mg/kg/d), 2-chloroadenosine (CADO, the stable analogue of adenosine, 2 mg/kg/d), GGD (5.4 g/kg/d) and GGD (5.4 g/kg/d) + CGS15943 (a nonselective adenosine receptor antagonist, 4 mg/kg/d). In vitro experiments, primary neonatal rat cardiomyocytes (NRCM) were divided into Con, PE (100 µM), CADO (5 µM), GGD (10-5 g/mL) and GGD (10-5 g/mL) + CGS15943 (5 µM). Ultrasound, H&E and Masson staining, hypertrophic genes expression and cell surface area were conducted to verify the GGD efficacy. Adenosine receptors (ADORs) expression were tested via real-time polymerase chain reaction (PCR), western blotting and immunofluorescence analysis. RESULTS: Network pharmacology identified ADORs among those of the core targets of GGD. In vitro experiments demonstrated that GGD attenuated PE-induced increased surface area (with an EC50 of 5.484 × 10-6 g/mL). In vivo data shown that GGD attenuated PE-induced ventricular wall thickening. In vitro and in vivo data indicated that GGD alleviated PE-induced hypertrophic gene expression (e.g., ANP, BNP and MYH7/MYH6), A1AR over-expression and A2aAR down-expression. Moreover, CADO exerts effects similar to GGD, whereas CGS15943 eliminated most effects of GGD. DISCUSSION AND CONCLUSIONS: Our findings suggest the mechanism by which GGD inhibits cardiac hypertrophy, highlighting regulation of ADORs as a potential therapeutic strategy for HF.
Assuntos
Cardiomegalia , Medicamentos de Ervas Chinesas , Camundongos Endogâmicos C57BL , Miócitos Cardíacos , Farmacologia em Rede , Fenilefrina , Animais , Medicamentos de Ervas Chinesas/farmacologia , Fenilefrina/farmacologia , Cardiomegalia/tratamento farmacológico , Cardiomegalia/induzido quimicamente , Camundongos , Masculino , Ratos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Miócitos Cardíacos/metabolismo , Ratos Sprague-Dawley , Células Cultivadas , Modelos Animais de Doenças , Medicina Tradicional Chinesa/métodosRESUMO
AIM: To investigate systemic immune-inflammation index (SII), neutrophil-to-lymphocyte ratio (NLR), and platelet-to-lymphocyte ratio (PLR) levels in patients with type 2 diabetes at different stages of diabetic retinopathy (DR). METHODS: This retrospective study included 141 patients with type 2 diabetes mellitus (DM): 45 without diabetic retinopathy (NDR), 47 with non-proliferative diabetic retinopathy (NPDR), and 49 with proliferative diabetic retinopathy (PDR). Complete blood counts were obtained, and NLR, PLR, and SII were calculated. The study analysed the ability of inflammatory markers to predict DR using receiver operating characteristic (ROC) curves. The relationships between DR stages and SII, PLR, and NLP were assessed using multivariate logistic regression. RESULTS: The average NLR, PLR, and SII were higher in the PDR group than in the NPDR group (P=0.011, 0.043, 0.009, respectively); higher in the NPDR group than in the NDR group (P<0.001 for all); and higher in the PDR group than in the NDR group (P<0.001 for all). In the ROC curve analysis, the NLR, PLR, and SII were significant predictors of DR (P<0.001 for all). The highest area under the curve (AUC) was for the PLR (0.929 for PLR, 0.925 for SII, and 0.821 for NLR). Multivariate regression analysis indicated that NLR, PLR, and SII were statistically significantly positive and independent predictors for the DR stages in patients with DM [odds ratio (OR)=1.122, 95% confidence interval (CI): 0.200-2.043, P<0.05; OR=0.038, 95%CI: 0.018-0.058, P<0.05; OR=0.007, 95%CI: 0.001-0.01, P<0.05, respectively). CONCLUSION: The NLR, PLR, and SII may be used as predictors of DR.
RESUMO
BACKGROUND: Nasopharyngeal carcinoma (NPC) is a malignant tumor associated with Epstein-Barr virus (EBV) infection. Chemoradiotherapy is the mainstream treatment for locally advanced NPC, and chemotherapeutic drugs are an indispensable part of NPC treatment. However, the toxic side-effects of chemotherapy drugs limit their therapeutic value, and new chemotherapy drugs are urgently needed for NPC. Silvestrol, an emerging natural plant anticancer molecule, has shown promising antitumor activity in breast cancer, melanoma, liver cancer, and other tumor types by promoting apoptosis in cancer cells to a greater extent than in normal cells. However, the effects of silvestrol on NPC and its possible molecular mechanisms have yet to be fully explored. METHODS: Cell counting kit-8 (CCK-8), cell scratch, flow cytometry, 5-ethynyl-2'-deoxyuridine (EdU), and Western blot (WB) assays were used to evaluate the effects of silvestrol on the cell viability, cell cycle, apoptosis, and migration of NPC cells. RNA sequencing (RNA-Seq) was used to study the effect of extracellular signal-regulated kinase (ERK) inhibitors on the cell transcriptome, and immunohistochemistry (IHC) to assess protein expression levels in patient specimens. RESULTS: Silvestrol inhibited cell migration and DNA replication of NPC cells, while promoting the expression of cleaved caspase-3, apoptosis, and cell cycle arrest. Furthermore, silvestrol altered the level of ERK phosphorylation. The ERK-targeted inhibitor LY3214996 attenuated silvestrol-mediated inhibition of NPC cell proliferation but not migration. Analysis of RNA-Seq data and WB were used to identify and validate the downstream regulatory targets of silvestrol. Expression of GADD45A, RAP1A, and hexokinase-II (HK2) proteins was inhibited by silvestrol and LY3214996. Finally, IHC revealed that GADD45A, RAP1A, and HK2 protein expression was more abundant in cancer tissues than in non-tumor tissues. CONCLUSIONS: Silvestrol inhibits the proliferation of NPC cells by targeting ERK phosphorylation. However, the inhibition of NPC cell migration by silvestrol was independent of the Raf-MEK-ERK pathway. RAP1A, HK2, and GADD45A may be potential targets for the action of silvestrol.