Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small ; 19(14): e2206727, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36592429

RESUMO

Ammonium ions (NH4 + ), as non-metallic charge carriers, are attracting attention in aqueous batteries due to its low molar mass, element sufficiency, and non-toxicity. However, the host materials for NH4 + storage are still limited. Herein, an oxygen defects-rich manganese oxide (MnO2-x ) for NH4 + storage are reported. The oxygen defects can endow the MnO2-x sample with improved electric conductivity and low interface activation energy. The electrochemical reaction mechanism is also verified by using ex situ X-ray photoelectron spectroscopy (XPS) and fourier transform infrared spectroscopy (FT-IR), demonstrating the insertion and extraction of NH4 + in the MnO2-x by formation/breaking of a hydrogen bond. As a result, MnO2-x delivers a high capacity of 109.9 mAh g-1 at the current density of 0.5 A g-1 and retention of 24 mAh g-1 after 1000 cycles at the current density of 4 A g-1 , outperforming the pristine MnO2 sample.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA