Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
2.
Front Endocrinol (Lausanne) ; 14: 1169624, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37560311

RESUMO

The gastrointestinal tract hosts the largest ecosystem of microorganisms in the body. The metabolism of ingested nutrients by gut bacteria produces novel chemical mediators that can influence chemosensory cells lining the gastrointestinal tract. Specifically, hormone-releasing enteroendocrine cells which express a host of receptors activated by these bacterial metabolites. This review will focus on the activation mechanisms of glucagon-like peptide-1 releasing enteroendocrine cells by the three main bacterial metabolites produced in the gut: short-chain fatty acids, secondary bile acids and indoles. Given the importance of enteroendocrine cells in regulating glucose homeostasis and food intake, we will also discuss therapies based on these bacterial metabolites used in the treatment of metabolic diseases such as diabetes and obesity. Elucidating the mechanisms gut bacteria can influence cellular function in the host will advance our understanding of this fundamental symbiotic relationship and unlock the potential of harnessing these pathways to improve human health.


Assuntos
Microbioma Gastrointestinal , Doenças Metabólicas , Humanos , Indóis , Ácidos e Sais Biliares/metabolismo , Ecossistema , Células Enteroendócrinas/metabolismo , Ácidos Graxos Voláteis/metabolismo , Bactérias/metabolismo , Doenças Metabólicas/terapia , Doenças Metabólicas/metabolismo
3.
Mol Metab ; 54: 101356, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34662713

RESUMO

OBJECTIVE: Motilin is a proximal small intestinal hormone with roles in gastrointestinal motility, gallbladder emptying, and hunger initiation. In vivo motilin release is stimulated by fats, bile, and duodenal acidification but the underlying molecular mechanisms of motilin secretion remain poorly understood. This study aimed to establish the key signaling pathways involved in the regulation of secretion from human motilin-expressing M-cells. METHODS: Human duodenal organoids were CRISPR-Cas9 modified to express the fluorescent protein Venus or the Ca2+ sensor GCaMP7s under control of the endogenous motilin promoter. This enabled the identification and purification of M-cells for bulk RNA sequencing, peptidomics, calcium imaging, and electrophysiology. Motilin secretion from 2D organoid-derived cultures was measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS), in parallel with other gut hormones. RESULTS: Human duodenal M-cells synthesize active forms of motilin and acyl-ghrelin in organoid culture, and also co-express cholecystokinin (CCK). Activation of the bile acid receptor GPBAR1 stimulated a 3.4-fold increase in motilin secretion and increased action potential firing. Agonists of the long-chain fatty acid receptor FFA1 and monoacylglycerol receptor GPR119 stimulated secretion by 2.4-fold and 1.5-fold, respectively. Acidification (pH 5.0) was a potent stimulus of M-cell calcium elevation and electrical activity, an effect attributable to acid-sensing ion channels, and a modest inducer of motilin release. CONCLUSIONS: This study presents the first in-depth transcriptomic and functional characterization of human duodenal motilin-expressing cells. We identify several receptors important for the postprandial and interdigestive regulation of motilin release.


Assuntos
Bile/metabolismo , Duodeno/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Motilina/metabolismo , Organoides/metabolismo , Células Cultivadas , Humanos , Concentração de Íons de Hidrogênio
4.
Nutrients ; 13(3)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803183

RESUMO

The gastrointestinal tract can assess the nutrient composition of ingested food. The nutrient-sensing mechanisms in specialised epithelial cells lining the gastrointestinal tract, the enteroendocrine cells, trigger the release of gut hormones that provide important local and central feedback signals to regulate nutrient utilisation and feeding behaviour. The evidence for nutrient-stimulated secretion of two of the most studied gut hormones, glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), along with the known cellular mechanisms in enteroendocrine cells recruited by nutrients, will be the focus of this review. The mechanisms involved range from electrogenic transporters, ion channel modulation and nutrient-activated G-protein coupled receptors that converge on the release machinery controlling hormone secretion. Elucidation of these mechanisms will provide much needed insight into postprandial physiology and identify tractable dietary approaches to potentially manage nutrition and satiety by altering the secreted gut hormone profile.


Assuntos
Células Enteroendócrinas/metabolismo , Polipeptídeo Inibidor Gástrico/metabolismo , Trato Gastrointestinal/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Fenômenos Fisiológicos da Nutrição/fisiologia , Secreções Corporais , Hormônios Gastrointestinais/metabolismo , Humanos , Período Pós-Prandial
5.
Peptides ; 140: 170532, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33744371

RESUMO

OBJECTIVES: To analyse the peptidomics of mouse enteroendocrine cells (EECs) and human gastrointestinal (GI) tissue and identify novel gut derived peptides. METHODS: High resolution nano-flow liquid chromatography mass spectrometry (LC-MS/MS) was performed on (i) flow-cytometry purified NeuroD1 positive cells from mouse and homogenised human intestinal biopsies, (ii) supernatants from primary murine intestinal cultures, (iii) intestinal homogenates from mice fed high fat diet. Candidate bioactive peptides were selected on the basis of species conservation, high expression/biosynthesis in EECs and evidence of regulated secretionin vitro. Candidate novel gut-derived peptides were chronically administered to mice to assess effects on food intake and glucose tolerance. RESULTS: A large number of peptide fragments were identified from human and mouse, including known full-length gut hormones and enzymatic degradation products. EEC-specific peptides were largely from vesicular proteins, particularly prohormones, granins and processing enzymes, of which several exhibited regulated secretion in vitro. No regulated peptides were identified from previously unknown genes. High fat feeding particularly affected the distal colon, resulting in reduced peptide levels from GCG, PYY and INSL5. Of the two candidate novel peptides tested in vivo, a peptide from Chromogranin A (ChgA 435-462a) had no measurable effect, but a progastrin-derived peptide (Gast p59-79), modestly improved glucose tolerance in lean mice. CONCLUSION: LC-MS/MS peptidomic analysis of murine EECs and human GI tissue identified the spectrum of peptides produced by EECs, including a potential novel gut hormone, Gast p59-79, with minor effects on glucose tolerance.


Assuntos
Células Enteroendócrinas/metabolismo , Gastrinas/farmacologia , Trato Gastrointestinal/metabolismo , Teste de Tolerância a Glucose/métodos , Peptídeos/metabolismo , Precursores de Proteínas/farmacologia , Proteoma/metabolismo , Magreza/tratamento farmacológico , Animais , Células Cultivadas , Glucose/metabolismo , Humanos , Masculino , Camundongos , Modelos Animais , Peptídeos/química , Proteoma/análise , Magreza/metabolismo
6.
Sci Rep ; 11(1): 2249, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33500423

RESUMO

Brain-derived neurotrophic factor (BDNF) is critically involved in the pathophysiology of chronic pain. However, the mechanisms of BDNF action on specific neuronal populations in the spinal superficial dorsal horn (SDH) requires further study. We used chronic BDNF treatment (200 ng/ml, 5-6 days) of defined-medium, serum-free spinal organotypic cultures to study intracellular calcium ([Ca2+]i) fluctuations. A detailed quantitative analysis of these fluctuations using the Frequency-independent biological signal identification (FIBSI) program revealed that BDNF simultaneously depressed activity in some SDH neurons while it unmasked a particular subpopulation of 'silent' neurons causing them to become spontaneously active. Blockade of gap junctions disinhibited a subpopulation of SDH neurons and reduced BDNF-induced synchrony in BDNF-treated cultures. BDNF reduced neuronal excitability assessed by measuring spontaneous excitatory postsynaptic currents. This was similar to the depressive effect of BDNF on the [Ca2+]i fluctuations. This study reveals novel regulatory mechanisms of SDH neuronal excitability in response to BDNF.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/farmacologia , Células do Corno Posterior/fisiologia , 1-Octanol/farmacologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Cálcio/metabolismo , Análise por Conglomerados , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/metabolismo , Modelos Neurológicos , Células do Corno Posterior/efeitos dos fármacos , Ratos
7.
Cell Rep ; 32(3): 107941, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32697988

RESUMO

By studying healthy women who do not request analgesia during their first delivery, we investigate genetic effects on labor pain. Such women have normal sensory and psychometric test results, except for significantly higher cuff pressure pain. We find an excess of heterozygotes carrying the rare allele of SNP rs140124801 in KCNG4. The rare variant KV6.4-Met419 has a dominant-negative effect and cannot modulate the voltage dependence of KV2.1 inactivation because it fails to traffic to the plasma membrane. In vivo, Kcng4 (KV6.4) expression occurs in 40% of retrograde-labeled mouse uterine sensory neurons, all of which express KV2.1, and over 90% express the nociceptor genes Trpv1 and Scn10a. In neurons overexpressing KV6.4-Met419, the voltage dependence of inactivation for KV2.1 is more depolarized compared with neurons overexpressing KV6.4. Finally, KV6.4-Met419-overexpressing neurons have a higher action potential threshold. We conclude that KV6.4 can influence human labor pain by modulating the excitability of uterine nociceptors.


Assuntos
Dor do Parto/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Subunidades Proteicas/metabolismo , Adulto , Alelos , Sequência de Aminoácidos , Analgésicos/farmacologia , Animais , Sequência de Bases , Membrana Celular/metabolismo , Cognição , Estudos de Coortes , Emoções , Feminino , Gânglios Espinais/metabolismo , Heterozigoto , Humanos , Ativação do Canal Iônico/genética , Dor do Parto/genética , Dor do Parto/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Mutação/genética , Nociceptores/metabolismo , Limiar da Dor , Polimorfismo de Nucleotídeo Único/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Gravidez , Multimerização Proteica , Células Receptoras Sensoriais/metabolismo , Canais de Potássio Shab/metabolismo , Frações Subcelulares/metabolismo , Útero/inervação
8.
Cell Rep ; 31(13): 107833, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32610134

RESUMO

Glucagon-like peptide-1 (GLP-1) from intestinal L-cells stimulates insulin secretion and reduces appetite after food ingestion, and it is the basis for drugs against type-2 diabetes and obesity. Drugs targeting L- and other enteroendocrine cells are under development, with the aim to mimic endocrine effects of gastric bypass surgery, but they are difficult to develop without human L-cell models. Human ileal organoids, engineered by CRISPR-Cas9, express the fluorescent protein Venus in the proglucagon locus, enabling maintenance of live, identifiable human L-cells in culture. Fluorescence-activated cell sorting (FACS)-purified organoid-derived L-cells, analyzed by RNA sequencing (RNA-seq), express hormones, receptors, and ion channels, largely typical of their murine counterparts. L-cells are electrically active and exhibit membrane depolarization and calcium elevations in response to G-protein-coupled receptor ligands. Organoids secrete hormones in response to glucose and other stimuli. The ability to label and maintain human L-cells in organoid culture opens avenues to explore L-cell function and develop drugs targeting the human enteroendocrine system.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/metabolismo , Íleo/citologia , Organoides/citologia , Coloração e Rotulagem , Animais , Células Cultivadas , Fenômenos Eletrofisiológicos , Glucose/metabolismo , Humanos , Células L , Camundongos , Peptídeos/metabolismo
9.
Mol Metab ; 35: 100954, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32244182

RESUMO

OBJECTIVE: Non-alcoholic steatohepatitis (NASH) is characterized by a robust pro-inflammatory component at both hepatic and systemic levels together with a disease-specific gut microbiome signature. Protein tyrosine phosphatase 1 B (PTP1B) plays distinct roles in non-immune and immune cells, in the latter inhibiting pro-inflammatory signaling cascades. In this study, we have explored the role of PTP1B in the composition of gut microbiota and gut barrier dynamics in methionine and choline-deficient (MCD) diet-induced NASH in mice. METHODS: Gut features and barrier permeability were characterized in wild-type (PTP1B WT) and PTP1B-deficient knockout (PTP1B KO) mice fed a chow or methionine/choline-deficient (MCD) diet for 4 weeks. The impact of inflammation was studied in intestinal epithelial and enteroendocrine cells. The secretion of GLP-1 was evaluated in primary colonic cultures and plasma of mice. RESULTS: We found that a shift in the gut microbiota shape, disruption of gut barrier function, higher levels of serum bile acids, and decreased circulating glucagon-like peptide (GLP)-1 are features during NASH. Surprisingly, despite the pro-inflammatory phenotype of global PTP1B-deficient mice, they were partly protected against the alterations in gut microbiota composition during NASH and presented better gut barrier integrity and less permeability under this pathological condition. These effects concurred with higher colonic mucosal inflammation, decreased serum bile acids, and protection against the decrease in circulating GLP-1 levels during NASH compared with their WT counterparts together with increased expression of GLP-2-sensitive genes in the gut. At the molecular level, stimulation of enteroendocrine STC-1 cells with a pro-inflammatory conditioned medium (CM) from lipopolysaccharide (LPS)-stimulated macrophages triggered pro-inflammatory signaling cascades that were further exacerbated by a PTP1B inhibitor. Likewise, the pro-inflammatory CM induced GLP-1 secretion in primary colonic cultures, an effect augmented by PTP1B inhibition. CONCLUSION: Altogether our results have unraveled a potential role of PTP1B in the gut-liver axis during NASH, likely mediated by increased sensitivity to GLPs, with potential therapeutic value.


Assuntos
Microbioma Gastrointestinal/genética , Mucosa Intestinal/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/deficiência , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Animais , Deficiência de Colina/complicações , Dieta/efeitos adversos , Modelos Animais de Doenças , Expressão Gênica , Técnicas de Inativação de Genes , Peptídeo 1 Semelhante ao Glucagon/sangue , Inflamação/metabolismo , Fígado/metabolismo , Masculino , Metionina/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/etiologia , Permeabilidade , Células RAW 264.7
10.
Front Neurosci ; 14: 615362, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33424545

RESUMO

Interoceptive and exteroceptive signals, and the corresponding coordinated control of internal organs and sensory functions, including pain, are received and orchestrated by multiple neurons within the peripheral, central and autonomic nervous systems. A central aim of the present report is to obtain a molecularly informed basis for analgesic drug development aimed at peripheral rather than central targets. We compare three key peripheral ganglia: nodose, sympathetic (superior cervical), and dorsal root ganglia in the rat, and focus on their molecular composition using next-gen RNA-Seq, as well as their neuroanatomy using immunocytochemistry and in situ hybridization. We obtained quantitative and anatomical assessments of transmitters, receptors, enzymes and signaling pathways mediating ganglion-specific functions. Distinct ganglionic patterns of expression were observed spanning ion channels, neurotransmitters, neuropeptides, G-protein coupled receptors (GPCRs), transporters, and biosynthetic enzymes. The relationship between ganglionic transcript levels and the corresponding protein was examined using immunohistochemistry for select, highly expressed, ganglion-specific genes. Transcriptomic analyses of spinal dorsal horn and intermediolateral cell column (IML), which form the termination of primary afferent neurons and the origin of preganglionic innervation to the SCG, respectively, disclosed pre- and post-ganglionic molecular-level circuits. These multimodal investigations provide insight into autonomic regulation, nodose transcripts related to pain and satiety, and DRG-spinal cord and IML-SCG communication. Multiple neurobiological and pharmacological contexts can be addressed, such as discriminating drug targets and predicting potential side effects, in analgesic drug development efforts directed at the peripheral nervous system.

11.
Nat Commun ; 10(1): 1029, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30833673

RESUMO

Enteroendocrine cells are specialised sensory cells located in the intestinal epithelium and generate signals in response to food ingestion. Whilst traditionally considered hormone-producing cells, there is evidence that they also initiate activity in the afferent vagus nerve and thereby signal directly to the brainstem. We investigate whether enteroendocrine L-cells, well known for their production of the incretin hormone glucagon-like peptide-1 (GLP-1), also release other neuro-transmitters/modulators. We demonstrate regulated ATP release by ATP measurements in cell supernatants and by using sniffer patches that generate electrical currents upon ATP exposure. Employing purinergic receptor antagonists, we demonstrate that evoked ATP release from L-cells triggers electrical responses in neighbouring enterocytes through P2Y2 and nodose ganglion neurones in co-cultures through P2X2/3-receptors. We conclude that L-cells co-secrete ATP together with GLP-1 and PYY, and that ATP acts as an additional signal triggering vagal activation and potentially synergising with the actions of locally elevated peptide hormone concentrations.


Assuntos
Trifosfato de Adenosina/metabolismo , Enterócitos/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Intestinos , Neurônios Aferentes/metabolismo , Vias Aferentes , Animais , Linhagem Celular , Ingestão de Alimentos , Células Enteroendócrinas/metabolismo , Feminino , Cistos Glanglionares/metabolismo , Cistos Glanglionares/patologia , Incretinas/metabolismo , Mucosa Intestinal/inervação , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/patologia , Gânglio Nodoso/metabolismo , Gânglio Nodoso/patologia , Peptídeo YY/metabolismo , Receptores Purinérgicos P2X2/metabolismo , Receptores Purinérgicos P2X3/metabolismo , Nervo Vago/metabolismo
12.
Endocrinology ; 159(7): 2826-2835, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29688303

RESUMO

Free fatty acid receptors (FFAs) are highly enriched in enteroendocrine cells providing pathways to link dietary fats and microbially generated short-chain fatty acids (SCFAs) to the secretion of a variety of gut hormones. FFA1 and FFA4 are receptors for long-chain fatty acids that have been linked to the elevation of plasma gut hormones after fat ingestion. FFA2 and FFA3 are receptors for SCFA, which are generated at high concentrations by microbial fermentation of dietary fiber and have also been implicated in enhancement of gut hormone secretion. FFAs are candidate drug targets for increasing the secretion of intestinal hormones such as glucagon-like peptide-1 and peptide YY as potential new treatments for type 2 diabetes and obesity. This review will examine aspects of intestinal physiology and pharmacology related to the function of FFAs in enteroendocrine cells.


Assuntos
Células Enteroendócrinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Humanos , Peptídeo YY/metabolismo
13.
Mol Metab ; 7: 90-101, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29167062

RESUMO

OBJECTIVES: The aim of this study was to investigate the electrical properties of ileal Glucagon-like peptide 1 (GLP-1) secreting L-cells using murine organoid cultures and the electrophysiological and intracellular signaling pathways recruited following activation of the Gαq-coupled free fatty acid receptors FFA1 and Gαs-coupled bile acid receptors GPBAR1. METHODS: Experiments were performed using ileal organoids generated from mice transgenically expressing fluorescent reporters (Epac2-camps and GCaMP3) under control of the proglucagon promoter. Electrophysiology and single cell imaging were performed on identified L-cells in organoids, and GLP-1 secretion from cultured organoids was measured by immunoassay. RESULTS: The FFA1 ligand TAK-875 triggered L-cell electrical activity, increased intracellular calcium, and activated a depolarizing current that was blocked by the TRPC3 inhibitor Pyr3. TAK-875 triggered GLP-1 secretion was Pyr3 sensitive, suggesting that the TRPC3 channel links FFA1 activation to calcium elevation and GLP-1 release in L-cells. GPBAR1 agonist triggered PKA-dependent L-type Ca2+ current activation and action potential firing in L-cells. The combination of TAK-875 and a GPBAR1 agonist triggered synergistic calcium elevation and GLP-1 secretory responses. CONCLUSIONS: FFA1 and GPBAR1 activation individually increased electrical activity in L-cells by recruiting pathways that include activation of TRPC3 and L-type voltage-gated Ca2+ channels. Synergy between the pathways activated downstream of these receptors was observed both at the level of Ca2+ elevation and GLP-1 secretion.


Assuntos
Ácidos e Sais Biliares/metabolismo , Células Enteroendócrinas/metabolismo , Ácidos Graxos/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Células Enteroendócrinas/fisiologia , Íleo/citologia , Íleo/metabolismo , Potenciais da Membrana , Camundongos , Receptores Acoplados a Proteínas G/metabolismo , Canais de Cátion TRPC/metabolismo
14.
Cold Spring Harb Protoc ; 2016(5)2016 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-27140920

RESUMO

Sympathetic neurons isolated from adult rat superior cervical ganglia (SCG) are a well-established model to study G-protein modulation of voltage-gated Ca(2+) channels (VGCCs). SCG neurons can be easily dissociated and are amendable to heterologous expression of genes, including genetic tools to study G-protein signaling pathways, within a time frame to maintain good spatial voltage-clamp control of membrane potential during electrophysiological recordings (8-36 h postdissociation). This protocol focuses on examining G-protein modulation of VGCCs; however, the procedures and experimental setup for acute application of agonists can be applied to study modulation of other ion channels (e.g., M-current, G-protein-coupled inwardly rectifying K(+) channels). We also discuss some common sources of artifacts that can arise during acute drug application onto dissociated neurons, which can mislead interpretation of results.


Assuntos
Canais de Cálcio Tipo N/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Neurônios/fisiologia , Técnicas de Patch-Clamp/métodos , Gânglio Cervical Superior/citologia , Animais , Canais de Cálcio Tipo N/genética , Proteínas de Ligação ao GTP/genética , Ratos
15.
Cold Spring Harb Protoc ; 2016(5)2016 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-27140924

RESUMO

G-protein-coupled receptor modulation of voltage-gated ion channels is a common means of fine-tuning the response of channels to changes in membrane potential. Such modulation impacts physiological processes such as synaptic transmission, and hence therapeutic strategies often directly or indirectly target these pathways. As an exemplar of channel modulation, we examine strategies for investigating G-protein modulation of CaV2.2 or N-type voltage-gated Ca(2+) channels. We focus on biochemical and genetic tools for defining the molecular mechanisms underlying the various forms of CaV2.2 channel modulation initiated following ligand binding to G-protein-coupled receptors.


Assuntos
Canais de Cálcio Tipo N/metabolismo , Técnicas Citológicas/métodos , Proteínas de Ligação ao GTP/metabolismo , Biologia Molecular/métodos , Receptores Acoplados a Proteínas G/metabolismo , Animais , Canais de Cálcio Tipo N/genética , Proteínas de Ligação ao GTP/genética , Humanos , Receptores Acoplados a Proteínas G/genética
16.
Sci Rep ; 6: 25137, 2016 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-27118437

RESUMO

Rem2 is a member of the RGK subfamily of RAS small GTPases. Rem2 inhibits high voltage activated calcium channels, is involved in synaptogenesis, and regulates dendritic morphology. Rem2 is the primary RGK protein expressed in the nervous system, but to date, the precise expression patterns of this protein are unknown. In this study, we characterized Rem2 expression in the mouse nervous system. In the CNS, Rem2 mRNA was detected in all regions examined, but was enriched in the striatum. An antibody specific for Rem2 was validated using a Rem2 knockout mouse model and used to show abundant expression in striatonigral and striatopallidal medium spiny neurons but not in several interneuron populations. In the PNS, Rem2 was abundant in a subpopulation of neurons in the trigeminal and dorsal root ganglia, but was absent in sympathetic neurons of superior cervical ganglia. Under basal conditions, Rem2 was subject to post-translational phosphorylation, likely at multiple residues. Further, Rem2 mRNA and protein expression peaked at postnatal week two, which corresponds to the period of robust neuronal maturation in rodents. This study will be useful for elucidating the functions of Rem2 in basal ganglia physiology.


Assuntos
Gânglios da Base/metabolismo , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Camundongos , Sistema Nervoso/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Gânglio Trigeminal/metabolismo
17.
Sci Rep ; 5: 12880, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26260360

RESUMO

FFAR3 (GPR41) is a G-protein coupled receptor for which short-chain fatty acids serve as endogenous ligands. The receptor is found on gut enteroendocrine L-cells, pancreatic ß-cells, and sympathetic neurons, and is implicated in obesity, diabetes, allergic airway disease, and altered immune function. In primates, FFAR3 is segmentally duplicated resulting in GPR42, a gene currently classified as a suspected pseudogene. In this study, we sequenced FFAR3 and GPR42 open reading frames from 56 individuals and found an unexpectedly high frequency of polymorphisms contributing to several complex haplotypes. We also identified a frequent (18.8%) structural variation that results in GPR42 copy number polymorphism. Finally, sequencing revealed that 50.6% of GPR42 haplotypes differed from FFAR3 by only a single non-synonymous substitution and that the GPR42 reference sequence matched only 4.4% of the alleles. Sequencing of cDNA from human sympathetic ganglia and colon revealed processed transcripts matching the GPR42 genotype. Expression of several GPR42 haplotypes in rat sympathetic neurons revealed diverse pharmacological phenotypes that differed in potency and efficacy. Our data suggest that GPR42 be reclassified as a functioning gene and that recognition of sequence and copy number polymorphism of the FFAR3/GPR42 complex be considered during genetic and pharmacological investigation of these receptors.


Assuntos
Variações do Número de Cópias de DNA/genética , Pseudogenes , Receptores Acoplados a Proteínas G/genética , Animais , Gânglios Simpáticos/efeitos dos fármacos , Gânglios Simpáticos/metabolismo , Genótipo , Haplótipos/genética , Humanos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/biossíntese
18.
J Neurosci ; 35(20): 8021-34, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25995484

RESUMO

Under physiological conditions, the voltage-gated sodium channel Nav1.8 is expressed almost exclusively in primary sensory neurons. The mechanism restricting Nav1.8 expression is not entirely clear, but we have previously described a 3.7 kb fragment of the Scn10a promoter capable of recapitulating the tissue-specific expression of Nav1.8 in transfected neurons and cell lines (Puhl and Ikeda, 2008). To validate these studies in vivo, a transgenic mouse encoding EGFP under the control of this putative sensory neuron specific promoter was generated and characterized in this study. Approximately 45% of dorsal root ganglion neurons of transgenic mice were EGFP-positive (mean diameter = 26.5 µm). The majority of EGFP-positive neurons bound isolectin B4, although a small percentage (∼10%) colabeled with markers of A-fiber neurons. EGFP expression correlated well with the presence of Nav1.8 transcript (95%), Nav1.8-immunoreactivity (70%), and TTX-R INa (100%), although not all Nav1.8-expressing neurons expressed EGFP. Several cranial sensory ganglia originating from neurogenic placodes, such as the nodose ganglion, failed to express EGFP, suggesting that additional regulatory elements dictate Scn10a expression in placodal-derived sensory neurons. EGFP was also detected in discrete brain regions of transgenic mice. Quantitative PCR and Nav1.8-immunoreactivity confirmed Nav1.8 expression in the amygdala, brainstem, globus pallidus, lateral and paraventricular hypothalamus, and olfactory tubercle. TTX-R INa recorded from EGFP-positive hypothalamic neurons demonstrate the usefulness of this transgenic line to study novel roles of Nav1.8 beyond sensory neurons. Overall, Scn10a-EGFP transgenic mice recapitulate the majority of the Nav1.8 expression pattern in neural crest-derived sensory neurons.


Assuntos
Linhagem da Célula , Proteínas de Fluorescência Verde/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Crista Neural/metabolismo , Regiões Promotoras Genéticas , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/genética , Masculino , Camundongos , Camundongos Transgênicos , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Fibras Nervosas Mielinizadas/metabolismo , Crista Neural/citologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese , Especificidade de Órgãos , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/metabolismo
19.
PLoS One ; 9(7): e100694, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24992013

RESUMO

RGK proteins, Gem, Rad, Rem1, and Rem2, are members of the Ras superfamily of small GTP-binding proteins that interact with Ca2+ channel ß subunits to modify voltage-gated Ca2+ channel function. In addition, RGK proteins affect several cellular processes such as cytoskeletal rearrangement, neuronal dendritic complexity, and synapse formation. To probe the phylogenetic origins of RGK protein-Ca2+ channel interactions, we identified potential RGK-like protein homologs in genomes for genetically diverse organisms from both the deuterostome and protostome animal superphyla. RGK-like protein homologs cloned from Danio rerio (zebrafish) and Drosophila melanogaster (fruit flies) expressed in mammalian sympathetic neurons decreased Ca2+ current density as reported for expression of mammalian RGK proteins. Sequence alignments from evolutionarily diverse organisms spanning the protostome/deuterostome divide revealed conservation of residues within the RGK G-domain involved in RGK protein--Cavß subunit interaction. In addition, the C-terminal eleven residues were highly conserved and constituted a signature sequence unique to RGK proteins but of unknown function. Taken together, these data suggest that RGK proteins, and the ability to modify Ca2+ channel function, arose from an ancestor predating the protostomes split from deuterostomes approximately 550 million years ago.


Assuntos
Canais de Cálcio Tipo L/genética , Proteínas de Drosophila/genética , Evolução Molecular , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Proteínas ras/genética , Sequência de Aminoácidos , Animais , Canais de Cálcio Tipo L/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Dados de Sequência Molecular , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Ratos , Ratos Wistar , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Proteínas ras/metabolismo
20.
J Neurosci ; 33(49): 19314-25, 2013 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-24305827

RESUMO

Free fatty acids receptor 3 (FFA3, GPR41) and 2 (FFA2, GPR43), for which the short-chain fatty acids (SCFAs) acetate and propionate are agonist, have emerged as important G-protein-coupled receptors influenced by diet and gut flora composition. A recent study (Kimura et al., 2011) demonstrated functional expression of FFA3 in the rodent sympathetic nervous system (SNS) providing a potential link between nutritional status and autonomic function. However, little is known of the source of endogenous ligands, signaling pathways, or effectors in sympathetic neurons. In this study, we found that FFA3 and FFA2 are unevenly expressed in the rat SNS with higher transcript levels in prevertebral (e.g., celiac-superior mesenteric and major pelvic) versus paravertebral (e.g., superior cervical and stellate) ganglia. FFA3, whether heterologously or natively expressed, coupled via PTX-sensitive G-proteins to produce voltage-dependent inhibition of N-type Ca(2+) channels (Cav2.2) in sympathetic neurons. In addition to acetate and propionate, we show that ß-hydroxybutyrate (BHB), a metabolite produced during ketogenic conditions, is also an FFA3 agonist. This contrasts with previous interpretations of BHB as an antagonist at FFA3. Together, these results indicate that endogenous BHB levels, especially when elevated under certain conditions, such as starvation, diabetic ketoacidosis, and ketogenic diets, play a potentially important role in regulating the activity of the SNS through FFA3.


Assuntos
Ácido 3-Hidroxibutírico/farmacologia , Canais de Cálcio Tipo N/efeitos dos fármacos , Neurônios/fisiologia , Receptores Acoplados a Proteínas G/agonistas , Sistema Nervoso Simpático/fisiologia , Animais , DNA Complementar/biossíntese , DNA Complementar/genética , Fenômenos Eletrofisiológicos/fisiologia , Transferência Ressonante de Energia de Fluorescência , Gânglios Simpáticos/citologia , Gânglios Simpáticos/efeitos dos fármacos , Gânglios Simpáticos/fisiologia , Células HeLa , Humanos , Hibridização In Situ , Corpos Cetônicos/farmacologia , Ligantes , Masculino , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Sistema Nervoso Simpático/citologia , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA