Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(5): 6198-6207, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38276960

RESUMO

Enhancing the durability and functionality of existing materials through sustainable pathways and appropriate structural design represents a time- and cost-effective strategy for the development of advanced wearable devices. Herein, a facile graphene oxide (GO) modification method via the hydroxyl-yne click reaction is present for the first time. By the click coupling between propiolate esters and hydroxyl groups on GO under mild conditions, various functional molecules are successfully grafted onto the GO. The modified GO is characterized by FTIR, XRD, TGA, XPS, and contact angle, proving significantly improved dispersibility in various solvents. Besides the high efficiency, high selectivity, and mild reaction conditions, this method is highly practical and accessible, avoiding the need for prefunctionalizations, metals, or toxic reagents. Subsequently, a rGO-PDMS sponge-based piezoresistive sensor developed by modified GO-P2 as the sensitive material exhibits impressive performance: high sensitivity (335 kPa-1, 0.8-150 kPa), wide linear range (>500 kPa), low detection limit (0.8 kPa), and long-lasting durability (>5000 cycles). Various practical applications have been demonstrated, including body joint movement recognition and real-time monitoring of subtle movements. These results prove the practicality of the methodology and make the rGO-PDMS sponge-based pressure sensor a real candidate for a wide array of wearable applications.

2.
Rev Sci Instrum ; 94(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37862485

RESUMO

Semiconducting polymers inherently exhibit polydispersity in terms of molecular structure and microscopic morphology, which often results in a broad distribution of energy levels for localized electronic states. Therefore, the bulk charge mobility strongly depends on the free charge density. In this study, we propose a method to measure the charge-density-dependent bulk mobility of conjugated polymer films with widely spread localized states using a conventional field-effect transistor configuration. The gate-induced variation of bulk charge density typically ranges within ±1018 cm-3; however, this range depends significantly on the energetic dispersion width of localized states. The field-effect bulk mobility and field-effect mobility near the semiconductor-dielectric interface along with their dependence on charge density can be simultaneously extracted from the transistor characteristics using various gate voltage ranges.

3.
Mater Horiz ; 10(10): 4438-4451, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37489257

RESUMO

Photonics neuromorphic computing shows great prospects due to the advantages of low latency, low power consumption and high bandwidth. Transistors with asymmetric electrode structures are receiving increasing attention due to their low power consumption, high optical response, and simple preparation technology. However, intelligent optical synapses constructed by asymmetric electrodes are still lacking systematic research and mechanism analysis. Herein, we present an asymmetric electrode structure of the light-stimulated synaptic transistor (As-LSST) with a bulk heterojunction as the semiconductor layer. The As-LSST exhibits superior electrical properties, photosensitivity and multiple biological synaptic functions, including excitatory postsynaptic currents, paired-pulse facilitation, and long-term memory. Benefitting from the asymmetric electrode configuration, the devices can operate under a very low drain voltage of 1 × 10-7 V, and achieve an ultra-low energy consumption of 2.14 × 10-18 J per light stimulus event. Subsequently, As-LSST implemented the optical logic function and associative learning. Utilizing As-LSST, an artificial neural network (ANN) with ultra-high recognition rate (over 97.5%) of handwritten numbers was constructed. This work presents an easily-accessible concept for future neuromorphic computing and intelligent electronic devices.

4.
Mater Horiz ; 10(9): 3269-3292, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37312536

RESUMO

The investigation of transistor-based artificial synapses in bioinspired information processing is undergoing booming exploration, and is the stable building block for brain-like computing. Given that the storage and computing separation architecture of von Neumann construction is not conducive to the current explosive information processing, it is critical to accelerate the connection between hardware systems and software simulations of intelligent synapses. So far, various works based on a transistor-based synaptic system successfully simulated functions similar to biological nerves in the human brain. However, the influence of the semiconductor and the device structural design on synaptic properties is still poorly linked. This review concretely emphasizes the recent advances in the novel structure design of semiconductor materials and devices used in synaptic transistors, not only from a single multifunction synaptic device but also to system application with various connected routes and related working mechanisms. Finally, crises and opportunities in transistor-based synaptic interconnection are discussed and predicted.

5.
ACS Appl Mater Interfaces ; 15(9): 12099-12108, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36808932

RESUMO

Although metal or oxide conductive films are widely used as electrodes of electronic devices, organic electrodes would be more favorable for next-generation organic electronics. Here, using some model conjugated polymers as examples, we report a class of highly conductive and optically transparent polymer ultrathin layers. Vertical phase separation of semiconductor/insulator blends leads to a highly ordered two-dimensional (2D) ultrathin layer of conjugated-polymer chains on the insulator. Afterwards, the thermally evaporated dopants on the ultrathin layer lead to a conductivity of up to 103 S cm-1 and a sheet resistance 103 Ω/square for a model conjugated polymer poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophenes) (PBTTT). The high conductivity is due to the high hole mobility (∼ 20 cm2 V-1 s-1), although doping-induced charge density is still in the moderate range of 1020 cm-3 with a 1 nm thick dopant. Metal-free monolithic coplanar field-effect transistors using the same conjugated-polymer ultrathin layer with alternatively doped regions as electrodes and a semiconductor layer are realized. The field-effect mobility of this monolithic transistor is over 2 cm2 V-1 s-1 for PBTTT, one order higher than that of the conventional PBTTT transistor using metal electrodes. The optical transparency of the single conjugated-polymer transport layer is over 90%, demonstrating a bright future for all-organic transparent electronics.

6.
ACS Appl Mater Interfaces ; 14(43): 48948-48959, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36269162

RESUMO

The advancement of self-powered intelligent strain systems for human-computer interaction is crucial toward wearable and energy-saving applications. Simultaneously, lowering operating voltage and thus reducing power consumption are of particular interests. A brain-like smart synaptic hardware system is considered as a promising candidate for low-power, parallel computing and learning processes. However, the combination of low-voltage organic transistors and energy efficient smart synapse hardware systems driven by a tactile signal has been hindered by the limited materials and technology. Here, by employing an elastomeric copolymer poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) with a high HFP content of 25 mol %, flexible, low-voltage transistors (|VG| ≤ 3 V) and a low energy consumption synapse ≤ 9.2 × 10-17 J are devised simultaneously, along with the lowest quality factor (R = Pw × VG, 2.76 × 10-16 J V). Furthermore, based on the low voltage and low power consumption characteristics, flexible artificial tactile recognition system and Morse code recognition are established without any computing supporting. Mechanical flexibility, cycling stability, image contrast enhancement functions, and simulated pattern recognition accuracy of the multilayer perceptron neural network are also simulated. This work recommends a route of exploiting low voltage, low power consumption synaptic systems and smart human-machine interfaces with low energy loss based on flexible organic synaptic transistors.


Assuntos
Eletrônica , Tato , Humanos , Sinapses , Redes Neurais de Computação , Encéfalo
7.
Artigo em Inglês | MEDLINE | ID: mdl-35548972

RESUMO

Organic field-effect transistors (OFETs) are attractive for next-generation electronics, while doping plays an important role in their performance optimization. In this work, a soluble molecular dopant with high electron affinity, CN6-CP, is investigated to manipulate the performance of OFETs with a p-type organic semiconductor as the transport layer. The performance of the model 2,7-didodecyl[1]benzothieno[3,2-b][1]benzothiophene (C12-BTBT) bottom-gate top-contact (BGTC) OFETs is greatly optimized upon doping by CN6-CP, and the field-effect mobility is improved from 5.5 to 11.1 cm2 V-1 s-1, with a widely tunable threshold voltage from -40 to +5 V. Improvements in performance also appear in CN6-CP doped BGBC OFETs. As compared with commonly used molecular dopant F4-TCNQ, CN6-CP exhibits excellent doping effects and great potential for organic electronic applications.

8.
Front Chem ; 9: 699387, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34178950

RESUMO

The preparation of micron- to nanometer-sized functional materials with well-defined shapes and packing is a key process to their applications. There are many ways to control the crystal growth of organic semiconductors. Adding polymer additives has been proven a robust strategy to optimize semiconductor crystal structure and the corresponding optoelectronic properties. We have found that poly(3-hexylthiophene) (P3HT) can effectively regulate the crystallization behavior of N,N'-dioctyl perylene diimide (C8PDI). In this study, we combined P3HT and polyethylene glycol (PEG) to amphiphilic block copolymers and studied the crystallization modification effect of these block copolymers. It is found that the crystallization modification effect of the block copolymers is retained and gradually enhanced with P3HT content. The length of C8PDI crystals were well controlled from 2 to 0.4 µm, and the width from 210 to 35 nm. On the other hand, due to the water solubility of PEG block, crystalline PEG-b-P3HT/C8PDI micelles in water were successfully prepared, and this water phase colloid could be stable for more than 2 weeks, which provides a new way to prepare pollution-free aqueous organic semiconductor inks for printing electronic devices.

9.
Adv Mater ; 30(2)2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29178351

RESUMO

Source-semiconductor-drain coplanar transistors with an organic semiconductor layer located within the same plane of source/drain electrodes are attractive for next-generation electronics, because they could be used to reduce material consumption, minimize parasitic leakage current, avoid cross-talk among different devices, and simplify the fabrication process of circuits. Here, a one-step, drop-casting-like printing method to realize a coplanar transistor using a model semiconductor/insulator [poly(3-hexylthiophene) (P3HT)/polystyrene (PS)] blend is developed. By manipulating the solution dewetting dynamics on the metal electrode and SiO2 dielectric, the solution within the channel region is selectively confined, and thus make the top surface of source/drain electrodes completely free of polymers. Subsequently, during solvent evaporation, vertical phase separation between P3HT and PS leads to a semiconductor-insulator bilayer structure, contributing to an improved transistor performance. Moreover, this coplanar transistor with semiconductor-insulator bilayer structure is an ideal system for injecting charges into the insulator via gate-stress, and the thus-formed PS electret layer acts as a "nonuniform floating gate" to tune the threshold voltage and effective mobility of the transistors. Effective field-effect mobility higher than 1 cm2 V-1 s-1 with an on/off ratio > 107 is realized, and the performances are comparable to those of commercial amorphous silicon transistors. This coplanar transistor simplifies the fabrication process of corresponding circuits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA