Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Medicine (Baltimore) ; 102(33): e34927, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37603502

RESUMO

Point-of-care tests for coronavirus disease 2019 (COVID-19) antigen detection have been widely used for rapid diagnosis in various settings. However, research on the diagnostic performance of the COVID-19 antigen test performed by non-laboratory personnel is limited. In this study, we aimed to elucidate the diagnostic performance of GenBody COVID-19 rapid antigen between laboratory professionals and non-laboratory staff. We retrospectively analyzed the data of patients who underwent both GenBody COVID-19 rapid antigen testing and reverse transcription polymerase chain reaction (RT-PCR) between November 01, 2021, and June 30, 2022. The diagnostic performance of the antigen test was compared between laboratory and non-laboratory operators, using RT-PCR as the gold standard. Sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio, positive predictive value, negative predictive value, and accuracy were calculated and sensitivity analysis was performed based on the PCR cycle threshold (Ct) value. Of the 11,963 patients, 1273 (10.6%) tested positive using real-time RT-PCR. The sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio, positive predictive value, negative predictive value, and accuracy of the GenBody COVID-19 rapid antigen test with 95% confidence interval were 79.92% (77.26%-82.39%), 99.23% (98.73%-99.57%), 103.25 (62.31-171.11), 0.2 (0.18-0.23), 510.18 (299.81-868.18), 98.11% (96.91%-98.85%), 90.75% (89.64%-91.75%) and 92.76% (91.76%-93.67%), respectively, for non-laboratory staff and 79.80% (74.78%-84.22%), 99.99% (99.94%-100.00%), 6983.92 (983.03-49617.00), 0.2 (0.16-0.25), 34566.45 (4770.30-250474.46) 99.58% (97.09%-99.94%), 99.32% (99.15%-99.46%), and 99.33% (99.13%-99.48%), respectively, for laboratory staff. Notably, when the PCR Ct value exceeded 25, the sensitivity of both the groups decreased to < 40%. The diagnostic performance of GenBody COVID-19 rapid antigen performed by non-laboratory staff was comparable to that of laboratory professionals. However, it should be noted that the sensitivity of the antigen tests decreased when the PCR Ct value exceeded 25. Overall, the GenBody COVID-19 antigen test is a viable option for non-laboratory staff during an epidemic.


Assuntos
COVID-19 , Epidemias , Humanos , Estudos Retrospectivos , COVID-19/diagnóstico , Testes Imunológicos , Reação em Cadeia da Polimerase em Tempo Real , Teste para COVID-19
2.
Environ Technol ; 35(13-16): 1935-44, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24956787

RESUMO

This investigation reports the use of modified multi-walled carbon nanotubes (MWCNTs) with various functional groups for adsorbing inorganic divalent mercury (Hg(II)) from water samples. To elucidate the behaviours and mechanisms of Hg(II) adsorption by modified MWCNTs, their adsorption capacity was studied by considering adsorption isotherms and kinetics. Particular attention was paid to interference of coexisting inorganic ions with Hg(II) adsorption. The results reveal that functionalization with oxygen-containing groups improved the Hg(II) adsorption capacity of the MWCNTs. Kinetic analysis demonstrated that the adsorption of Hg(II) by MWCNTs was closely described by the pseudo-second-order and Elovich models, suggesting that the adsorption of Hg(II) by MWCNTs was significantly affected by chemical adsorption. The kinetic results were also analysed using the intraparticle diffusion model, which revealed that intraparticle diffusion was not the only rate-controlling mechanism. The adsorption of Hg(II) on MWCNTs fell drastically as the ionic strength increased from 0 to 1.0mol/L chloride ions, and declined significantly as the pH increased from 2.2 to 10.5. The elemental maps obtained by energy-dispersive spectrometer (EDS) revealed the formation of surface complexes of chloride ions with functional groups on MWCNTs, which reduced the number of available sites for the adsorption of Hg(II) and strengthened the repulsive forces between Hg(II) and MWCNTs. The EDS results suggest that chloride ions are important in controlling Hg(II) speciation and adsorption on the surfaces of MWCNTs.


Assuntos
Mercúrio/isolamento & purificação , Nanotubos de Carbono/química , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Ânions/química , Cloretos/química , Concentração de Íons de Hidrogênio , Cinética , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA