Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.706
Filtrar
2.
Alzheimers Dement ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747519

RESUMO

INTRODUCTION: This study addresses the urgent need for non-invasive early-onset Alzheimer's disease (EOAD) prediction. Using optical coherence tomography angiography (OCTA), we present a choriocapillaris model sensitive to EOAD, correlating with serum biomarkers. METHODS: Eighty-four EOAD patients and 73 controls were assigned to swept-source OCTA (SS-OCTA) or the spectral domain OCTA (SD-OCTA) cohorts. Our hypothesis on choriocapillaris predictive potential in EOAD was tested and validated in these two cohorts. RESULTS: Both cohorts revealed diminished choriocapillaris signals, demonstrating the highest discriminatory capability (area under the receiver operating characteristic curve: SS-OCTA 0.913, SD-OCTA 0.991; P < 0.001). A sparser SS-OCTA choriocapillaris correlated with increased serum amyloid beta (Aß)42, Aß42/40, and phosphorylated tau (p-tau)181 levels (all P < 0.05). Apolipoprotein E status did not affect choriocapillaris measurement. DISCUSSION: The choriocapillaris, observed in both cohorts, proves sensitive to EOAD diagnosis, and correlates with serum Aß and p-tau181 levels, suggesting its potential as a diagnostic tool for identifying and tracking microvascular changes in EOAD. HIGHLIGHTS: Optical coherence tomography angiography may be applied for non-invasive screening of Alzheimer's disease (AD). Choriocapillaris demonstrates high sensitivity and specificity for early-onset AD diagnosis. Microvascular dynamics abnormalities are associated with AD.

3.
Biomed Pharmacother ; 175: 116727, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38733771

RESUMO

Myelodysplastic syndromes (MDS) encompass a collection of clonal hematopoietic malignancies distinguished by the depletion of peripheral blood cells. The treatment of MDS is hindered by the advanced age of patients, with a restricted repertoire of drugs currently accessible for therapeutic intervention. In this study, we found that ES-Cu strongly inhibited the viability of MDS cell lines and activated cuproptosis in a copper-dependent manner. Importantly, ferroptosis inducer IKE synergistically enhanced ES-Cu-mediated cytotoxicity both in vitro and in vivo. Of note, the combination of IKE and ES-Cu intensively impaired mitochondrial homeostasis with increased mitochondrial ROS, MMP hyperpolarized, down-regulated iron-sulfur proteins and declined oxygen consumption rate. Additionally, ES-Cu/IKE treatment could enhance the lipoylation-dependent oligomerization of the DLAT. To elucidate the specific order of events in the synergistic cell death, inhibitors of ferroptosis and cuproptosis were utilized to further characterize the basis of cell death. Cell viability assays showed that the glutathione and its precursor N-acetylcysteine could significantly rescue the cell death under either mono or combination treatment, demonstrating that GSH acts at the crossing point in the regulation network of cuproptosis and ferroptosis. Significantly, the reconstitution of xCT expression and knockdown of FDX1 cells have been found to contribute to the tolerance of mono treatment but have little recovery impact on the combined treatment. Collectively, these findings suggest that a synergistic interaction leading to the induction of multiple programmed cell death pathways could be a promising approach to enhance the effectiveness of therapy for MDS.

4.
Med Phys ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767532

RESUMO

BACKGROUND: Bladder prolapse is a common clinical disorder of pelvic floor dysfunction in women, and early diagnosis and treatment can help them recover. Pelvic magnetic resonance imaging (MRI) is one of the most important methods used by physicians to diagnose bladder prolapse; however, it is highly subjective and largely dependent on the clinical experience of physicians. The application of computer-aided diagnostic techniques to achieve a graded diagnosis of bladder prolapse can help improve its accuracy and shorten the learning curve. PURPOSE: The purpose of this study is to combine convolutional neural network (CNN) and vision transformer (ViT) for grading bladder prolapse in place of traditional neural networks, and to incorporate attention mechanisms into mobile vision transformer (MobileViT) for assisting in the grading of bladder prolapse. METHODS: This study focuses on the grading of bladder prolapse in pelvic organs using a combination of a CNN and a ViT. First, this study used MobileNetV2 to extract the local features of the images. Next, a ViT was used to extract the global features by modeling the non-local dependencies at a distance. Finally, a channel attention module (i.e., squeeze-and-excitation network) was used to improve the feature extraction network and enhance its feature representation capability. The final grading of the degree of bladder prolapse was thus achieved. RESULTS: Using pelvic MRI images provided by a Huzhou Maternal and Child Health Care Hospital, this study used the proposed method to grade patients with bladder prolapse. The accuracy, Kappa value, sensitivity, specificity, precision, and area under the curve of our method were 86.34%, 78.27%, 83.75%, 95.43%, 85.70%, and 95.05%, respectively. In comparison with other CNN models, the proposed method performed better. CONCLUSIONS: Thus, the model based on attention mechanisms exhibits better classification performance than existing methods for grading bladder prolapse in pelvic organs, and it can effectively assist physicians in achieving a more accurate bladder prolapse diagnosis.

5.
Cell Death Dis ; 15(5): 348, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769308

RESUMO

Regenerating gene family member 4 (Reg4) has been implicated in acute pancreatitis, but its precise functions and involved mechanisms have remained unclear. Herein, we sought to investigate the contribution of Reg4 to the pathogenesis of pancreatitis and evaluate its therapeutic effects in experimental pancreatitis. In acute pancreatitis, Reg4 deletion increases inflammatory infiltrates and mitochondrial cell death and decreases autophagy recovery, which are rescued by the administration of recombinant Reg4 (rReg4) protein. In chronic pancreatitis, Reg4 deficiency aggravates inflammation and fibrosis and inhibits compensatory cell proliferation. Moreover, C-X-C motif ligand 12 (CXCL12)/C-X-C motif receptor 4 (CXCR4) axis is sustained and activated in Reg4-deficient pancreas. The detrimental effects of Reg4 deletion are attenuated by the administration of the approved CXCR4 antagonist plerixafor (AMD3100). Mechanistically, Reg4 mediates its function in pancreatitis potentially via binding its receptor exostosin-like glycosyltransferase 3 (Extl3). In conclusion, our findings suggest that Reg4 exerts a therapeutic effect during pancreatitis by limiting inflammation and fibrosis and improving cellular regeneration.


Assuntos
Fibrose , Mitocôndrias , Proteínas Associadas a Pancreatite , Pancreatite , Receptores CXCR4 , Animais , Proteínas Associadas a Pancreatite/metabolismo , Proteínas Associadas a Pancreatite/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Pancreatite/patologia , Pancreatite/metabolismo , Camundongos , Receptores CXCR4/metabolismo , Receptores CXCR4/genética , Humanos , Camundongos Endogâmicos C57BL , Ciclamos/farmacologia , Masculino , Camundongos Knockout , Benzilaminas/farmacologia , Quimiocina CXCL12/metabolismo , Proliferação de Células , Transdução de Sinais , Autofagia , Pâncreas/patologia , Pâncreas/metabolismo , Morte Celular
6.
Proc Natl Acad Sci U S A ; 121(22): e2322479121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38771871

RESUMO

The significance of biochemical cues in the tumor immune microenvironment in affecting cancer metastasis is well established, but the role of physical factors in the microenvironment remains largely unexplored. In this article, we investigated how the mechanical interaction between cancer cells and immune cells, mediated by extracellular matrix (ECM), influences immune escape of cancer cells. We focus on the mechanical regulation of macrophages' targeting ability on two distinct types of colorectal carcinoma (CRC) cells with different metastatic potentials. Our results show that macrophages can effectively target CRC cells with low metastatic potential, due to the strong contraction exhibited by the cancer cells on the ECM, and that cancer cells with high metastatic potential demonstrated weakened contractions on the ECM and can thus evade macrophage attack to achieve immune escape. Our findings regarding the intricate mechanical interactions between immune cells and cancer cells can serve as a crucial reference for further exploration of cancer immunotherapy strategies.


Assuntos
Neoplasias Colorretais , Matriz Extracelular , Macrófagos , Evasão Tumoral , Microambiente Tumoral , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Macrófagos/imunologia , Humanos , Microambiente Tumoral/imunologia , Matriz Extracelular/metabolismo , Matriz Extracelular/imunologia , Linhagem Celular Tumoral , Metástase Neoplásica , Animais , Camundongos , Comunicação Celular/imunologia
8.
Ren Fail ; 46(1): 2350235, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38721924

RESUMO

Increasing evidence suggests that peritoneal fibrosis induced by peritoneal dialysis (PD) is linked to oxidative stress. However, there are currently no effective interventions for peritoneal fibrosis. In the present study, we explored whether adding caffeic acid phenethyl ester (CAPE) to peritoneal dialysis fluid (PDF) improved peritoneal fibrosis caused by PD and explored the molecular mechanism. We established a peritoneal fibrosis model in Sprague-Dawley rats through intraperitoneal injection of PDF and lipopolysaccharide (LPS). Rats in the PD group showed increased peritoneal thickness, submesothelial collagen deposition, and the expression of TGFß1 and α-SMA. Adding CAPE to PDF significantly inhibited PD-induced submesothelial thickening, reduced TGFß1 and α-SMA expression, alleviated peritoneal fibrosis, and improved the peritoneal ultrafiltration function. In vitro, peritoneal mesothelial cells (PMCs) treated with PDF showed inhibition of the AMPK/SIRT1 pathway, mitochondrial membrane potential depolarization, overproduction of mitochondrial reactive oxygen species (ROS), decreased ATP synthesis, and induction of mesothelial-mesenchymal transition (MMT). CAPE activated the AMPK/SIRT1 pathway, thereby inhibiting mitochondrial membrane potential depolarization, reducing mitochondrial ROS generation, and maintaining ATP synthesis. However, the beneficial effects of CAPE were counteracted by an AMPK inhibitor and siSIRT1. Our results suggest that CAPE maintains mitochondrial homeostasis by upregulating the AMPK/SIRT1 pathway, which alleviates oxidative stress and MMT, thereby mitigating the damage to the peritoneal structure and function caused by PD. These findings suggest that adding CAPE to PDF may prevent and treat peritoneal fibrosis.


Assuntos
Proteínas Quinases Ativadas por AMP , Ácidos Cafeicos , Diálise Peritoneal , Fibrose Peritoneal , Álcool Feniletílico , Ratos Sprague-Dawley , Sirtuína 1 , Animais , Fibrose Peritoneal/etiologia , Fibrose Peritoneal/metabolismo , Fibrose Peritoneal/prevenção & controle , Sirtuína 1/metabolismo , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/farmacologia , Ácidos Cafeicos/farmacologia , Ácidos Cafeicos/uso terapêutico , Ratos , Masculino , Proteínas Quinases Ativadas por AMP/metabolismo , Diálise Peritoneal/efeitos adversos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Animais de Doenças , Transdução de Sinais/efeitos dos fármacos , Peritônio/patologia , Peritônio/efeitos dos fármacos , Peritônio/metabolismo , Homeostase/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Soluções para Diálise
9.
Medicine (Baltimore) ; 103(18): e37961, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701271

RESUMO

BACKGROUND: Myasthenia gravis (MG) is a common autoimmune disease that often involves the skeletal muscle of the whole body and seriously affects patients' quality of life. Acupuncture and moxibustion treatment of MG has unique advantages, the aim is to evaluate the clinical effect of acupuncture and moxibustion on MG. METHODS: The literature on acupuncture and moxibustion treating MG in PubMed, CochraneLibrary, EMBASE, SCI, China Academic Journals full-text database, China Biology Medicine disc, VIP and Wanfang database were searched through computers from the establishment of the database to December 2022. RESULTS: A total of 11 studies were included, involving 658 patients, where 330 in the treatment group and 328 in the control group. The results of the meta-analysis showed that the treatment group performed better than the control group in improving the total clinical response rate (OR = 3.26, 95%[2.04,5.21], P < .01). Additionally, the treatment group outperformed the control group in raising the absolute clinical score (MD = -3.48, 95%CI[-5.17, -1.78], P < .01). However, there was no significant difference between the treatment group and the control group in improving the level of serum interleukin-6 receptor (MD = -1.45,95%CI[-6.85,3.95], P > .05) and OMG quantitative score (MD = -2.16,95%CI[-4.85,0.52], P > .05). The total clinical effective rate was tested for publication bias, which showed that the 2 sides of the funnel plot were asymmetrical, suggesting the possible existence of publication bias. CONCLUSION: Acupuncture and moxibustion has a good effect on MG, which is better than conventional Western medicine in improving the total clinical effective rate and absolute clinical score.


Assuntos
Terapia por Acupuntura , Moxibustão , Miastenia Gravis , Moxibustão/métodos , Humanos , Miastenia Gravis/terapia , Terapia por Acupuntura/métodos , Resultado do Tratamento , Qualidade de Vida
10.
Front Microbiol ; 15: 1377683, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694806

RESUMO

Introduction: Pear Valsa canker, caused by Valsa pyri (V. pyri), poses a major threat to pear production. We aimed to assess the effectiveness of the cell-free supernatant (CFS) produced by Trichoderma virens (T. virens) to control the development of pear Valsa canker and reveal the inhibitory mechanism against the pathogenic fungi. Results: Using morphological characteristics and phylogenetic analysis, the pathogen G1H was identified as V. pyri, and the biocontrol fungus WJ561 was identified as Trichoderma virens. CFS derived from WJ561 exhibited strong inhibition of mycelial growth and was capable of reducing the pathogenicity of V. pyri on pear leaves and twigs. Scanning electron microscopy (SEM) observations revealed deformations and shrinkages in the fungal hyphae treated with CFS. The CFS also destroyed the hyphal membranes leading to the leakage of cellular contents and an increase in the malondialdehyde (MDA) content. Additionally, CFS significantly inhibited the activities of catalase (CAT) and superoxide dismutase (SOD), and downregulated the expression of antioxidant defense-related genes in V. pyri, causing the accumulation of reactive oxygen species (ROS). Artesunate, identified as the main component in CFS by liquid chromatograph-mass spectrometry (LC-MS), exhibited antifungal activity against V. pyri. Conclusion: Our findings demonstrate the promising potential of T. virens and its CFS in controlling pear Valsa canker. The primary inhibitory mechanism of CFS involves multiple processes, including membrane damage and negatively affecting enzymatic detoxification pathways, consequently leading to hyphal oxidative damage of V. pyri. This study lays a theoretical foundation for the utilization of T. virens to control V. pyri in practical production.

12.
Small Methods ; : e2400030, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38716631

RESUMO

High-quality, low-cost, and rapid detection is essential for the society to reopen the economy during the critical period of transition from Coronavirus Disease 2019 (COVID-19) pandemic response to pandemic control. In addition to performing sustainable and target-driven tracking of SARS-CoV-2, conducting comprehensive surveillance of variants and multiple respiratory pathogens is also critical due to the frequency of reinfections, mutation immune escape, and the growing prevalence of the cocirculation of multiple viruses. By utilizing a 0.05 cents wax interface, a Stable Interface assisted Multiplex Pathogenesis Locating Estimation in Onepot (SIMPLEone) using nested RPA and CRISPR/Cas12a enzymatic reporting system is successfully developed. This smartphone-based SIMPLEone system achieves highly sensitive one-pot detection of SARS-CoV-2 and its variants, or multiple respiratory viruses, in 40 min. A total of 89 clinical samples, 14 environmental samples, and 20 cat swab samples are analyzed by SIMPLEone, demonstrating its excellent sensitivity (3-6 copies/reaction for non-extraction detection of swab and 100-150 copies/mL for RNA extraction-based assay), accuracy (>97.7%), and specificity (100%). Furthermore, a high percentage (44.2%) of co-infection cases are detected in SARS-CoV-2-infected patients using SIMPLEone's multiplex detection capability.

13.
Chin J Integr Med ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753273

RESUMO

OBJECTIVE: To assess efficacy of Chinese medicine (CM) on insomnia considering characteristics of treatment based on syndrome differentiation. METHODS: A total of 116 participants aged 18 to 65 years with moderate and severe primary insomnia were randomized to the placebo (n=20) or the CM group (n=96) for a 4-week treatment and a 4-week follow-up. Three CM clinicians independently prescribed treatments for each patient based on syndromes differentiation. The primary outcome was change in total sleep time (TST) from baseline. Secondary endpoints included sleep onset latency (SOL), wake time after sleep onset (WASO), sleep efficiency, Pittsburgh Sleep Quality Index (PSQI) and CM symptoms. RESULTS: The CM group had an average 0.6 h more (95% confidence interval (CI): 0.3-0.9, P<0.001) TST and 34.1% (10.3%-58.0%, P=0.005) more patients beyond 0.5 h TST increment than that of the placebo group. PSQI was changed -3.3 (-3.8 to -2.7) in the CM group, a -2.0 (-3.2 to -0.8, P<0.001) difference from the placebo group. The CM symptom score in the CM group decreased -2.0 (-3.3 to -0.7, P=0.003) more than the placebo group. SOL and WASO changes were not significantly different between groups. The analysis of prescriptions by these clinicians revealed blood deficiency and Liver stagnation as the most common syndromes. Prescriptions for these clinicians displayed relative stability, while the herbs varied. All adverse events were mild and were not related to study treatment. CONCLUSION: CM treatment based on syndrome differentiation can increase TST and improve sleep quality of primary insomnia. It is effective and safe for primary insomnia. In future studies, the long-term efficacy validation and the exploratory of eutherapeutic clinicians' fixed herb formulas should be addressed (Registration No. NCT01613183).

15.
Artigo em Inglês | MEDLINE | ID: mdl-38565910

RESUMO

BACKGROUND: A growing number of studies have shown that in addition to adaptive immune cells such as CD8 + T cells and CD4 + T cells, various other cellular components within prostate cancer (PCa) tumor microenvironment (TME), mainly tumor-associated macrophages (TAMs), cancer-associated fibroblasts (CAFs) and myeloid-derived suppressor cells (MDSCs), have been increasingly recognized as important modulators of tumor progression and promising therapeutic targets. OBJECTIVE: In this review, we aim to delineate the mechanisms by which TAMs, CAFs and MDSCs interact with PCa cells in the TME, summarize the therapeutic advancements targeting these cells and discuss potential new therapeutic avenues. METHODS: We searched PubMed for relevant studies published through December 10 2023 on TAMs, CAFs and MDSCs in PCa. RESULTS: TAMs, CAFs and MDSCs play a critical role in the tumorigenesis, progression, and metastasis of PCa. Moreover, they substantially mediate therapeutic resistance against conventional treatments including anti-androgen therapy, chemotherapy, and immunotherapy. Therapeutic interventions targeting these cellular components have demonstrated promising effects in preclinical models and several clinical trials for PCa, when administrated alone, or combined with other anti-cancer therapies. However, the lack of reliable biomarkers for patient selection and incomplete understanding of the mechanisms underlying the interactions between these cellular components and PCa cells hinder their clinical translation and utility. CONCLUSION: New therapeutic strategies targeting TAMs, CAFs, and MDSCs in PCa hold promising prospects. Future research endeavors should focus on a more comprehensive exploration of the specific mechanisms by which these cells contribute to PCa, aiming to identify additional drug targets and conduct more clinical trials to validate the safety and efficacy of these treatment strategies.

16.
Adv Sci (Weinh) ; : e2401150, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582512

RESUMO

The structural diversity of biological macromolecules in different environments contributes complexity to enzymological processes vital for cellular functions. Fluorescence resonance energy transfer and electron microscopy are used to investigate the enzymatic reaction of T4 DNA ligase catalyzing the ligation of nicked DNA. The data show that both the ligase-AMP complex and the ligase-AMP-DNA complex can have four conformations. This finding suggests the parallel occurrence of four ligation reaction pathways, each characterized by specific conformations of the ligase-AMP complex that persist in the ligase-AMP-DNA complex. Notably, these complexes have DNA bending angles of ≈0°, 20°, 60°, or 100°. The mechanism of parallel reactions challenges the conventional notion of simple sequential reaction steps occurring among multiple conformations. The results provide insights into the dynamic conformational changes and the versatile attributes of T4 DNA ligase and suggest that the parallel multiple reaction pathways may correspond to diverse T4 DNA ligase functions. This mechanism may potentially have evolved as an adaptive strategy across evolutionary history to navigate complex environments.

17.
Insect Sci ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605428

RESUMO

Leaf cutting ants of the genus Atta cultivate fungal gardens, carefully modifying environmental conditions to maintain optimal temperature for fungal growth. Antennal nerves from Atta are highly temperature sensitive, but the underlying molecular sensor is unknown. Here, we utilize Atta texana (Texas leaf cutter ant) to investigate the molecular basis of ant temperature sensation and how it might have evolved as the range expanded northeast across Texas from ancestral populations in Mexico. We focus on transient receptor potential (TRP) channel genes, the best characterized temperature sensor proteins in animals. Atta texana antennae express 6 of 13 Hymenopteran TRP channel genes and sequences are under a mix of relaxed and intensified selection. In a behavioral assay, we find A. texana workers prefer 24 °C (range 21-26 °C) for fungal growth. There was no evidence of regulatory evolution across a temperature transect in Texas, but instead Hymenoptera-specific TRPA (HsTRPA) expression highly correlated with ambient temperature. When expressed in vitro, HsTRPA from A. texana is temperature activated with Q10 values exceeding 100 on initial exposure to temperatures above 33 °C. Surprisingly, HsTRPA also appears to be activated by cooling, and therefore to our knowledge, the first non-TRPA1 ortholog to be described with dual heat/cold activation and the first in any invertebrate.

18.
Prep Biochem Biotechnol ; : 1-11, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592940

RESUMO

We established an efficient method using high-speed countercurrent chromatography (HSCCC) combined with preparative high-performance liquid chromatography (prep-HPLC) for isolating and purifying Gelsemium elegans (G. elegans) alkaloids. First, the two-phase solvent system composed of 1% triethylamine aqueous solution/n-hexane/ethyl acetate/ethanol (volume ratio 4:2:3:2) was employed to separate the crude extract (350 mg) using HSCCC. Subsequently, the mixture that resulted from HSCCC was further separated by Prep-HPLC, resulting in seven pure compounds including: 14-hydroxygelsenicine (1, 12.1 mg), sempervirine (2, 20.8 mg), 19-(R)-hydroxydihydrogelelsevirine (3, 10.1 mg), koumine (4, 50.5 mg), gelsemine (5, 32.2 mg), gelselvirine (6, 50.5 mg), and 11-hydroxyhumanmantenine (7, 12.5 mg). The purity of these seven compounds were 97.4, 98.9, 98.5, 99, 99.5, 96.8, and 85.5%, as determined by HPLC. The chemical structures of the seven compounds were analyzed and confirmed by electrospray ionization mass spectrometry (ESI-MS), 1H-nuclear magnetic resonance (1H NMR), and 13 C-nuclear magnetic resonance (13 C NMR) spectra. The results indicate that the HSCCC-prep-HPLC method can effectively separate the major alkaloids from the purified G. elegans, holding promising prospects for potential applications in the separation and identification of other traditional Chinese medicines.

19.
Huan Jing Ke Xue ; 45(5): 3059-3068, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629566

RESUMO

Research on microplastics (MPs) is gaining more attention in the soil environment, but their impact on soil microbiota and related nitrogen processes remains poorly understood. Nitrous oxide (N2O) is one of the important greenhouse gases of the nitrogen cycle in agricultural soil, which mainly originates from microbial-mediated nitrogen (N) transformation processes. Microplastics can influence soil nitrogen transformation, as well as nitrogen-related functional enzymes and genes, and its enrichment may profoundly affect the N2O emissions in soil. However, because of the complexity of the properties of MPs, variations in experimental conditions, and spatial-temporal scales, the results on the effects of MPs on soil N2O emissions, nitrogen content, enzymes activities, and nitrogen functional genes remain inconsistent. Additionally, there is a lack of research conducted at broader experimental scales (e.g., pot scale), from diverse perspectives (e.g., denitrification or DNRA), and using advanced techniques (e.g., stable isotope approaches) to elucidate the underlying mechanisms. Therefore, to comprehend the environmental risk of MPs on soil from multiple perspectives, this review summarized the impact of MPs on soil N cycling from previous published research to provide a knowledge basis and gain holistic insights into the potential impact of soil microplastic enrichment on N2O emission patterns in agricultural soils under climate change conditions.

20.
Inorg Chem ; 63(15): 7080-7088, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38574395

RESUMO

Ceramic capacitors have great potential for application in power systems due to their fantastic energy storage performance (ESP) and wide operating temperature range. In this study, the (1 - x)Bi0.5Na0.47Li0.03Sn0.01Ti0.99O3-xKNbO3 (BNLST-xKN) energy storage ceramics were synthesized through the solid-phase reaction method. The addition of KN disrupts the long-range ferroelectric order of the BNLST ceramic, inducing the emergence of polar nanoregions (PNRs), which enhances the ESP of the ceramics. The BNLST-0.2KN ceramic demonstrates a high recovered energy density (Wrec ∼ 3.66 J/cm3) and efficiency (η ∼ 85.8%) under a low electric field of 210 kV/cm. Meantime, it exhibits a large current density (CD ∼ 831.74 A/cm2), high power density (PD ∼ 78.86 MW/cm3), and fast discharge rate (t0.9 ∼ 0.1 µs), along with good temperature stability and excellent fatigue stability. These properties make the BNLST-0.2KN ceramic a promising candidate for energy storage applications in low electric fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA