Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 143(19): 7368-7379, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33855846

RESUMO

The expansion of a hexanucleotide repeat GGGGCC (G4C2) in the C9orf72 gene is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The G4C2 expansion leads to repeat-associated non-AUG (RAN) translation and the production of toxic dipeptide repeat (DPR) proteins, but the mechanisms of RAN translation remain enigmatic. Here, we report that the RNA helicase DHX36 is a robust positive regulator of C9orf72 RAN translation. DHX36 has a high affinity for the G4C2 repeat RNA, preferentially binds to the repeat RNA's G-quadruplex conformation, and efficiently unwinds the G4C2 G-quadruplex structures. Native DHX36 interacts with the G4C2 repeat RNA and is essential for effective RAN translation in the cell. In induced pluripotent stem cells and differentiated motor neurons derived from C9orf72-linked ALS patients, reducing DHX36 significantly decreased the levels of endogenous DPR proteins. DHX36 is also aberrantly upregulated in tissues of C9orf72-linked ALS patients. These results indicate that DHX36 facilitates C9orf72 RAN translation by resolving repeat RNA G-quadruplex structures and may be a potential target for therapeutic intervention.


Assuntos
Esclerose Lateral Amiotrófica/genética , DNA Helicases/genética , RNA/genética , Expansão das Repetições de DNA/genética , Quadruplex G , Humanos
2.
PLoS Biol ; 19(3): e3001096, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33705388

RESUMO

The regulation of protein synthesis is essential for maintaining cellular homeostasis, especially during stress responses, and its dysregulation could underlie the development of human diseases. The critical step during translation regulation is the phosphorylation of eukaryotic initiation factor 2 alpha (eIF2α). Here we report the identification of a direct kinase of eIF2α, microtubule affinity-regulating kinase 2 (MARK2), which phosphorylates eIF2α in response to proteotoxic stress. The activity of MARK2 was confirmed in the cells lacking the 4 previously known eIF2α kinases. MARK2 itself was found to be a substrate of protein kinase C delta (PKCδ), which serves as a sensor for protein misfolding stress through a dynamic interaction with heat shock protein 90 (HSP90). Both MARK2 and PKCδ are activated via phosphorylation in proteotoxicity-associated neurodegenerative mouse models and in human patients with amyotrophic lateral sclerosis (ALS). These results reveal a PKCδ-MARK2-eIF2α cascade that may play a critical role in cellular proteotoxic stress responses and human diseases.


Assuntos
Fator de Iniciação 2 em Eucariotos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Retículo Endoplasmático/metabolismo , Fator de Iniciação 2 em Eucariotos/fisiologia , Proteínas de Choque Térmico HSP90/metabolismo , Homeostase , Humanos , Camundongos , Camundongos Knockout , Microtúbulos/metabolismo , Fosforilação , Biossíntese de Proteínas , Estresse Fisiológico/fisiologia , eIF-2 Quinase/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(45): 28114-28125, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33106424

RESUMO

An imbalance in cellular homeostasis occurring as a result of protein misfolding and aggregation contributes to the pathogeneses of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Here, we report the identification of a ubiquitin-specific protease, USP7, as a regulatory switch in a protein quality-control system that defends against proteotoxicity. A genome-wide screen in a Caenorhabditis elegans model of SOD1-linked ALS identified the USP7 ortholog as a suppressor of proteotoxicity in the nervous system. The actions of USP7 orthologs on misfolded proteins were found to be conserved in Drosophila and mammalian cells. USP7 acts on protein quality control through the SMAD2 transcription modulator of the transforming growth factor ß pathway, which activates autophagy and enhances the clearance of misfolded proteins. USP7 deubiquitinates the E3 ubiquitin ligase NEDD4L, which mediates the degradation of SMAD2. Inhibition of USP7 protected against proteotoxicity in mammalian neurons, and SMAD2 was found to be dysregulated in the nervous systems of ALS patients. These findings reveal a regulatory pathway of protein quality control that is implicated in the proteotoxicity-associated neurodegenerative diseases.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Ubiquitina-Proteína Ligases Nedd4 , Proteína Smad2 , Peptidase 7 Específica de Ubiquitina , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Drosophila , Células-Tronco Embrionárias , Endopeptidases/genética , Endopeptidases/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Masculino , Camundongos , Ubiquitina-Proteína Ligases Nedd4/genética , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Neurônios/metabolismo , Dobramento de Proteína , Proteína Smad2/genética , Proteína Smad2/metabolismo , Peptidase 7 Específica de Ubiquitina/genética , Peptidase 7 Específica de Ubiquitina/metabolismo
4.
Nat Neurosci ; 22(7): 1196, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31164751

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

5.
Nat Neurosci ; 22(6): 875-886, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31061493

RESUMO

Misfolded protein toxicity and failure of protein quality control underlie neurodegenerative diseases including amyotrophic lateral sclerosis and frontotemporal dementia. Here, we identified Lethal(3)malignant brain tumor-like protein 1 (L3MBTL1) as a key regulator of protein quality control, the loss of which protected against the proteotoxicity of mutant Cu/Zn superoxide dismutase or C9orf72 dipeptide repeat proteins. L3MBTL1 acts by regulating p53-dependent quality control systems that degrade misfolded proteins. SET domain-containing protein 8, an L3MBTL1-associated p53-binding protein, also regulated clearance of misfolded proteins and was increased by proteotoxicity-associated stresses in mammalian cells. Both L3MBTL1 and SET domain-containing protein 8 were upregulated in the central nervous systems of mouse models of amyotrophic lateral sclerosis and human patients with amyotrophic lateral sclerosis/frontotemporal dementia. The role of L3MBTL1 in protein quality control is conserved from Caenorhabditis elegans to mammalian neurons. These results reveal a protein quality-control pathway that operates in both normal stress response and proteotoxicity-associated neurodegenerative diseases.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Proteínas Cromossômicas não Histona/metabolismo , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Animais , Caenorhabditis elegans , Drosophila , Humanos , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Proteínas Repressoras , Proteínas Supressoras de Tumor
6.
Genes Dev ; 32(21-22): 1380-1397, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30366907

RESUMO

Cells undergo metabolic adaptation during environmental changes by using evolutionarily conserved stress response programs. This metabolic homeostasis is exquisitely regulated, and its imbalance could underlie human pathological conditions. We report here that C9orf72, which is linked to the most common forms of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), is a key regulator of lipid metabolism under stress. Loss of C9orf72 leads to an overactivation of starvation-induced lipid metabolism that is mediated by dysregulated autophagic digestion of lipids and increased de novo fatty acid synthesis. C9orf72 acts by promoting the lysosomal degradation of coactivator-associated arginine methyltransferase 1 (CARM1), which in turn regulates autophagy-lysosomal functions and lipid metabolism. In ALS/FTD patient-derived neurons or tissues, a reduction in C9orf72 function is associated with dysregulation in the levels of CARM1, fatty acids, and NADPH oxidase NOX2. These results reveal a C9orf72-CARM1 axis in the control of stress-induced lipid metabolism and implicates epigenetic dysregulation in relevant human diseases.


Assuntos
Proteína C9orf72/fisiologia , Glucose/fisiologia , Metabolismo dos Lipídeos , Proteína-Arginina N-Metiltransferases/metabolismo , Estresse Fisiológico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Células Cultivadas , Ácidos Graxos/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Células HEK293 , Humanos , Lisossomos/metabolismo , Camundongos , Proteína-Arginina N-Metiltransferases/fisiologia
7.
Mutagenesis ; 30(4): 475-85, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25744060

RESUMO

The human JC virus (JCV) is potentially carcinogenic to humans as a Group 2B carcinogen, and it is ubiquitous in human populations. To investigate whether the small tumour (ST) antigen of the JCV contributes to genomic instability, we established cell lines stably expressing the JCV ST and examined its role in DNA repair. Results from host cell reactivation (HCR) assay revealed that the established cell lines exhibited lower nucleotide excision repair (NER) activity than the vector control cells did. The presence of γ-H2AX, a marker of DNA damage, indicated that the established cell line contained more DNA damage foci compared with vector control cells. Furthermore, the results of clonogenic analyses indicated that the JCV ST-expressing cells were more sensitive than the vector control cells to ultraviolet (UV) irradiation and cisplatin treatment. Micronuclei formation assay revealed that the JCV ST-positive cells presented more chromosomal breakages than did the JCV ST-negative cells, particularly after exposure to DNA-damaging agents. The xeroderma pigmentosum Group D protein, a DNA helicase involved in NER, was downregulated in the JCV ST-positive cells in response to UV irradiation. The effect of the protein phosphatase 2A (PP2A) inhibitor okadaic acid on NER was similar to that of the ST, which is a PP2A-binding protein. Therefore, the deactivation of the PP2A might underlie ST-mediated NER inhibition. The results of this study indicate that exposing JCV ST-positive cells to DNA-damaging agents causes genomic instability, which contributes to carcinogenesis. Our data provide further evidence on the association between the JCV ST and human cancer.


Assuntos
Antígenos Virais de Tumores/farmacologia , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Instabilidade Genômica , Vírus JC/fisiologia , Neoplasias Pulmonares/patologia , Western Blotting , Proliferação de Células/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Testes para Micronúcleos , Ácido Okadáico/farmacologia , Proteína Fosfatase 2/antagonistas & inibidores , Proteína Fosfatase 2/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas
8.
Hum Mol Genet ; 23(21): 5649-58, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24916379

RESUMO

Leucine-rich repeat kinase 2 (LRRK2) is a complex kinase and mutations in LRRK2 are perhaps the most common genetic cause of Parkinson's disease (PD). However, the identification of the normal physiological function of LRRK2 remains elusive. Here, we show that LRRK2 protects neurons against apoptosis induced by the Drosophila genes grim, hid and reaper. Genetic dissection reveals that Akt is the critical downstream kinase of LRRK2 that phosphorylates and inhibits FOXO1, and thereby promotes survival. Like human LRRK2, Drosophila lrrk also promotes neuron survival; lrrk loss-of-function mutant displays reduced cell numbers, which can be rescued by LRRK2 expression. Importantly, LRRK2 G2019S and LRRK2 R1441C mutants impair the ability of LRRK2 to activate Akt, and fail to prevent apoptotic death. Ectopic expression of a constitutive active form of Akt hence is sufficient to rescue this functional deficit. These data establish that LRRK2 can protect neurons from apoptotic insult through a survival pathway in which LRRK2 signals to activate Akt, and then inhibits FOXO1. These results might indicate that a LRRK-Akt therapeutic pathway to promote neuron survival and to prevent neurodegeneration in Parkinson's disease.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Neurônios/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Alelos , Animais , Apoptose/genética , Sobrevivência Celular/genética , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/genética , Expressão Gênica , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Modelos Biológicos , Mutação , Fenótipo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais
9.
Nanotechnology ; 24(28): 285102, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23787733

RESUMO

Enterovirus 71 (EV71) infection is an emerging infectious disease causing neurological complications and/or death within two to three days after the development of fever and rash. A low viral titre in clinical specimens makes the detection of EV71 difficult. Conventional approaches for detecting EV71 are time consuming, poorly sensitive, or complicated, and cannot be used effectively for clinical diagnosis. Furthermore, EV71 and Coxsackie virus A16 (CA16) may cross react in conventional assays. Therefore, a rapid, highly sensitive, specific, and user-friendly test is needed. We developed an EV71-specific nanogold-modified working electrode for electrochemical impedance spectroscopy in the detection of EV71. Our results show that EV71 can be distinguished from CA16, Herpes simplex virus, and lysozyme, with the modified nanogold electrode being able to detect EV71 in concentrations as low as 1 copy number/50 µl reaction volume, and the duration between sample preparation and detection being 11 min. This detection platform may have the potential for use in point-of-care diagnostics.


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Espectroscopia Dielétrica/métodos , Enterovirus Humano A/isolamento & purificação , Ouro/química , Nanopartículas Metálicas/química , Anticorpos Imobilizados/química , Anticorpos Imobilizados/metabolismo , Enterovirus Humano A/imunologia , Humanos , Nanomedicina/instrumentação , Nanomedicina/métodos , Sensibilidade e Especificidade
10.
Acta Neuropathol ; 125(5): 711-25, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23494099

RESUMO

While a number of genome-wide association studies have identified microtubule-associated protein tau as a strong risk factor for Parkinson's disease (PD), little is known about the mechanism through which human tau can predispose an individual to this disease. Here, we demonstrate that expression of human wild-type tau is sufficient to disrupt the survival of dopaminergic neurons in a Drosophila model. Tau triggers a synaptic pathology visualized by vesicular monoamine transporter-pHGFP that precedes both the age-dependent formation of tau-containing neurofibrillary tangle-like pathology and the progressive loss of DA neurons, thereby recapitulating the pathological hallmarks of PD. Flies overexpressing tau also exhibit progressive impairments of both motor and learning behaviors. Surprisingly, contrary to common belief that hyperphosphorylated tau could aggravate toxicity, DA neuron degeneration is alleviated by expressing the modified, hyperphosphorylated tau(E14). Together, these results show that impairment of VMAT-containing synaptic vesicle, released to synapses before overt tauopathy may be the underlying mechanism of tau-associated PD and suggest that correction or prevention of this deficit may be appropriate targets for early therapeutic intervention.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Tauopatias/metabolismo , Tauopatias/patologia , Proteínas tau/metabolismo , Fatores Etários , Animais , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Drosophila , Humanos , Atividade Motora/fisiologia , Degeneração Neural/etiologia , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Tauopatias/etiologia , Proteínas Vesiculares de Transporte de Monoamina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA