Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 94(3): 033202, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37012821

RESUMO

We describe a high intensity metastable Kr source based on a helical resonator RF discharge. By adding an external B-field to the discharge source, the metastable Kr flux is enhanced. The effect of geometric configuration and magnetic field strength has been studied and optimized experimentally. Compared to the helical resonator discharge source without an external B-field, the new source showed an enhancement factor of 4-5 in producing metastable Kr beams. This improvement has a direct impact on the radio-krypton dating applications as it can increase the atom count rate, resulting in a higher analytical precision.

2.
Proc Natl Acad Sci U S A ; 119(40): e2200835119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161936

RESUMO

Ice cores from alpine glaciers are unique archives of past global and regional climate conditions. However, recovering climate records from these ice cores is often hindered by the lack of a reliable chronology, especially in the age range of 100 to 500 anni (a) for which radiometric dating has not been available so far. We report on radiometric 39Ar dating of an ice core from the Tibetan Plateau and the construction of a chronology covering the past 1,300 a using the obtained 39Ar ages. This is made possible by advances in the analysis of 39Ar using the laser-based detection method atom trap trace analysis, resulting in a twofold increase in the upper age limit of 39Ar dating. By measuring the anthropogenic 85Kr along with 39Ar we quantify and correct modern air contamination, thus removing a major systematic uncertainty of 39Ar dating. Moreover, the 85Kr data for the top part of the ice core provide information on firn processes, including the age difference between the ice and its enclosed gas. This first application of 39Ar and 85Kr to an ice core facilitates further ice cores from nonpolar glaciers to be used for recovering climate records of the Common Era, a period including pronounced anomalies such as the Little Ice Age and the Medieval Warm Period.


Assuntos
Camada de Gelo , Datação Radiométrica , Clima , Mudança Climática , Datação Radiométrica/métodos , Tibet
3.
Rev Sci Instrum ; 93(2): 023203, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35232153

RESUMO

We demonstrate fast analysis of 39Ar/Ar at the 10-16 level using a mass spectrometer for isotope pre-enrichment and an atom trap for counting. An argon gas sample first passes through a dipole mass separator that reduces the dominant isotope 40Ar by two orders of magnitude while preserving both the rare tracer isotope 39Ar and a minor stable isotope 38Ar for control purposes. Measurements of both natural and enriched samples with atom trap trace analysis demonstrate that the 39Ar/38Ar ratios change less than 10%, while the overall count rates of 39Ar are increased by one order of magnitude. By overcoming the analysis-speed bottleneck, this advance will benefit large-scale applications of 39Ar dating in the earth sciences, particularly for mapping ocean circulation.

4.
Nat Phys ; 17(12): 1396-1401, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34966439

RESUMO

Ultralight bosons such as axion-like particles are viable candidates for dark matter. They can form stable, macroscopic field configurations in the form of topological defects that could concentrate the dark matter density into many distinct, compact spatial regions that are small compared with the Galaxy but much larger than the Earth. Here we report the results of the search for transient signals from the domain walls of axion-like particles by using the global network of optical magnetometers for exotic (GNOME) physics searches. We search the data, consisting of correlated measurements from optical atomic magnetometers located in laboratories all over the world, for patterns of signals propagating through the network consistent with domain walls. The analysis of these data from a continuous month-long operation of GNOME finds no statistically significant signals, thus placing experimental constraints on such dark matter scenarios.

5.
Rev Sci Instrum ; 92(6): 063204, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243571

RESUMO

Cosmogenic 39Ar dating is an emerging technique in dating mountain glacier ice, mapping ocean circulation, and tracing groundwater flow. We have realized an atom-trap system for the analysis of the radioactive isotope 39Ar (half-life = 269 years) in environmental samples. The system is capable of analyzing small (1-5 kg) environmental water or ice samples and achieves a count rate of 10 atoms/h for 39Ar at the modern isotopic abundance level of 8 × 10-16. By switching frequently between counting 39Ar atoms and measuring the stable and abundant isotope 38Ar, drift effects in the trapping efficiency are largely suppressed, leading to a more precise measurement of the isotope ratio 39Ar/38Ar. Moreover, cleaning techniques are developed to alleviate cross-sample contamination, reducing the background 39Ar count rate down to <0.5 atoms/h. These advances allow us to determine the 39Ar age in the range of 250-1300 years with precisions of <20%.

6.
J Environ Radioact ; 233: 106604, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33813356

RESUMO

Radioactive 85Kr is a major gaseous fission product emitted into the air by the nuclear fuel reprocessing industry. Measuring atmospheric 85Kr has applications in environmental monitoring, atmospheric transport model validation and dating of environmental water samples, including groundwater, sea water and glacier ice. We present an ultra-sensitive method for fast analysis of atmospheric 85Kr at 10-5 parts per trillion level. This method is based on laser cooling and trapping and is capable of counting individual 85Kr atoms. Measurements at the 3% precision level can be made on krypton extracted from 1L STP of air with a turnaround time of 1.5 h. Moreover, we have realized a system for continuous air sampling over days to weeks. Based on this atom-counting technology and a portable air sample integrator we have realized atmospheric 85Kr baseline monitoring in Hefei, China, for over 20 months. The technological advances presented in this work lay the ground for a global atmospheric 85Kr monitoring network.


Assuntos
Poluentes Radioativos do Ar , Monitoramento de Radiação , Poluentes Radioativos do Ar/análise , China , Monitoramento Ambiental , Camada de Gelo , Radioisótopos de Criptônio/análise
7.
Sci Total Environ ; 762: 144106, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33373751

RESUMO

Measurements of the long-lived 81Kr and 36Cl radioisotopes in groundwater from the Negev Desert (Israel) were used to assess the 36Cl/Cl input ratios and Cl- contents for paleorecharge into the Nubian Sandstone Aquifer (NSA). The reconstructed Cl- content of the recharge flux was on the order of 300-400 mg/L. An initial 36Cl/Cl ratio of 50 × 10-15 was assessed for the groundwater replenishment in the Negev Desert since the late Pleistocene, in agreement with the 36Cl/Cl ratios in recent local rainwater. This is despite possible changes in the climatic conditions and the 36Cl production rates in the atmosphere over this timeframe. This similarity in values is explained by the major role played by the erosion and weathering of near-surface materials in the desert environment that dominate the hydrochemistry of rains, floods, and the consequent groundwater recharge. Spatial variation in the reconstructed initial 36Cl/Cl ratio is accounted for by the differences in the mineral aerosol sources for specific recharge areas of the NSA. Accordingly, regional variations in the 36Cl/Cl input in groundwater reservoirs surrounding the Mediterranean Sea indicate various processes that govern the 36Cl/Cl system. Finally, the results of this study highlight the great advantage of integrating 81Kr age information in evaluating the initial 36Cl/Cl and Cl- input, which is essential for the calibration of 36Cl radioisotope as an available long-term dating tool for a given basin.

8.
Natl Sci Rev ; 7(12): 1796-1797, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34691514
9.
Anal Chem ; 91(21): 13576-13581, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31550899

RESUMO

The noble gas radioisotopes 85Kr, 81Kr, and 39Ar are nearly ideal environmental tracers because of their chemical inertness and simple transport mechanisms. Recent advances in Atom Trap Trace Analysis have enabled measurements of 85Kr and 81Kr using 10-20 kg of water or ice, and 39Ar in only a few kilograms, making these tracers available to be applied in the earth sciences on a large-scale. To meet the resulting increase in demand, we have developed an automated process for the dual separation of krypton and argon from environmental samples based on titanium gettering and gas chromatography. 0.5-4 L STP air samples have been purified, demonstrating purities and recoveries of >90% for krypton and >99% for argon within 90-120 min of processing time. Samples of high methane admixtures, a challenge regularly encountered in groundwater applications, have been purified by exploiting the full potential of titanium gettering at high temperatures (>1000 °C). Samples with 0.4-48 L STP of methane admixture are processed in 2-5 h without compromising purity or recovery. The applicability of the purification system is further demonstrated using actual groundwater samples with carbon dioxide and methane content in the extracted gas up to 16 L STP and 42 L STP, respectively.

10.
Proc Natl Acad Sci U S A ; 116(33): 16222-16227, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31358637

RESUMO

In arid regions, groundwater is a vital resource that can also provide a long-term record of the regional water cycle. However, the use of groundwater as a paleoclimate proxy has been limited by the complex hydrology and the lack of appropriate chronometers to determine the recharge time without complication. Applying 81Kr, a long-lived radioisotope tracer, we investigate the paleohydroclimate and subsurface water storage properties of the Nubian Sandstone Aquifer in the Negev Desert, Israel. Based on the spatial distributions of stable isotopes and the abundance of 81Kr, we resolve subsurface mixing and identify two distinct moisture sources of the recharge: one recent (<38 ky ago) from the Mediterranean and the other 361 ± 30 ky ago from the tropical Atlantic, both of which occurred under conditions of low orbital eccentricity comparable to that of the present. The recent recharge provided by the moisture from Mediterranean cyclones can be attributed to the southward shift of the storm track during the Last Glacial Maximum, and the earlier recharge can be attributed to moisture from the Atlantic delivered as tropical plumes under a climate colder than the present. Furthermore, the residence time of the latter reveals that tectonically active terrain can store groundwater for an unexpectedly long period, likely due to strongly attenuated groundwater flow across the fault zones. With this tracer, groundwater can now serve as a direct record of paleoprecipitation over land and of subsurface water storage from the mid-Pleistocene and onward.

11.
Proc Natl Acad Sci U S A ; 111(19): 6876-81, 2014 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-24753606

RESUMO

We present successful (81)Kr-Kr radiometric dating of ancient polar ice. Krypton was extracted from the air bubbles in four ∼350-kg polar ice samples from Taylor Glacier in the McMurdo Dry Valleys, Antarctica, and dated using Atom Trap Trace Analysis (ATTA). The (81)Kr radiometric ages agree with independent age estimates obtained from stratigraphic dating techniques with a mean absolute age offset of 6 ± 2.5 ka. Our experimental methods and sampling strategy are validated by (i) (85)Kr and (39)Ar analyses that show the samples to be free of modern air contamination and (ii) air content measurements that show the ice did not experience gas loss. We estimate the error in the (81)Kr ages due to past geomagnetic variability to be below 3 ka. We show that ice from the previous interglacial period (Marine Isotope Stage 5e, 130-115 ka before present) can be found in abundance near the surface of Taylor Glacier. Our study paves the way for reliable radiometric dating of ancient ice in blue ice areas and margin sites where large samples are available, greatly enhancing their scientific value as archives of old ice and meteorites. At present, ATTA (81)Kr analysis requires a 40-80-kg ice sample; as sample requirements continue to decrease, (81)Kr dating of ice cores is a future possibility.


Assuntos
Mudança Climática , Camada de Gelo/química , Gelo/análise , Radioisótopos de Criptônio , Datação Radiométrica/métodos , Regiões Antárticas , Gases/análise , Datação Radiométrica/normas , Reprodutibilidade dos Testes
12.
J Contam Hydrol ; 160: 12-20, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24594409

RESUMO

The Waste Isolation Pilot Plant (WIPP) in New Mexico is the first geologic repository for disposal of transuranic nuclear waste from defense-related programs of the US Department of Energy. It is constructed within halite beds of the Permian-age Salado Formation. The Culebra Dolomite, confined within Rustler Formation evaporites overlying the Salado Formation, is a potential pathway for radionuclide transport from the repository to the accessible environment in the human-disturbed repository scenario. Although extensive subsurface characterization and numerical flow modeling of groundwater has been done in the vicinity of the WIPP, few studies have used natural isotopic tracers to validate the flow models and to better understand solute transport at this site. The advent of Atom-Trap Trace Analysis (ATTA) has enabled routine measurement of cosmogenic (81)Kr (half-life 229,000 yr), a near-ideal tracer for long-term groundwater transport. We measured (81)Kr in saline groundwater sampled from two Culebra Dolomite monitoring wells near the WIPP site, and compared (81)Kr model ages with reverse particle-tracking results of well-calibrated flow models. The (81)Kr model ages are ~130,000 and ~330,000 yr for high-transmissivity and low-transmissivity portions of the formation, respectively. Compared with flow model results which indicate a relatively young mean hydraulic age (~32,000 yr), the (81)Kr model ages imply substantial physical attenuation of conservative solutes in the Culebra Dolomite and provide limits on the effective diffusivity of contaminants into the confining aquitards.


Assuntos
Água Subterrânea/análise , Radioisótopos de Criptônio/análise , Criptônio/análise , Poluentes Químicos da Água/análise , Modelos Teóricos , New Mexico , Movimentos da Água
13.
Rev Sci Instrum ; 80(3): 036105, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19334960

RESUMO

We investigate the role of carrier gases in the production of metastable argon atoms in a rf-driven discharge. The effects of different carrier gases (krypton, xenon, neon, and helium), carrier gas pressures, and rf discharge powers are examined. A xenon carrier gas provides the greatest metastable population of argon, yielding an optimal fractional metastable population of argon (Ar(*)/Ar) of 2x10(-4) at 0.2 mTorr of xenon gas. The optimal krypton configuration yields 60% of the xenon-supported population at 1.5 times higher pressure. Neon and helium perform considerably worse probably due to their higher ionization potentials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA