Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
1.
JAMA Intern Med ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767897

RESUMO

This case report describes a patient in their 60s with intermittent palpitation, weakness, and irregular cardiac rhythm.

2.
EClinicalMedicine ; 72: 102626, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38756107

RESUMO

Background: Previous trials of renal denervation (RDN) have been designed to investigate reduction of blood pressure (BP) as the primary efficacy endpoint using non-selective RDN without intraoperatively verified RDN success. It is an unmet clinical need to map renal nerves, selectively denervate renal sympathetic nerves, provide readouts for the interventionalists and avoid futile RDN. We aimed to examine the safety and efficacy of renal nerve mapping/selective renal denervation (msRDN) in patients with uncontrolled hypertension (HTN) and determine whether antihypertensive drug burden is reduced while office systolic BP (OSBP) is controlled to target level (<140 mmHg). Methods: We conducted a randomized, prospective, multicenter, single-blinded, sham-controlled trial. The study combined two efficacy endpoints at 6 months as primary outcomes: The control rate of patients with OSBP <140 mmHg (non-inferior outcome) and change in the composite index of antihypertensive drugs (Drug Index) in the treatment versus Sham group (superior outcome). This design avoids confounding from excess drug-taking in the Sham group. Antihypertensive drug burden was assessed by a composite index constructed as: Class N (number of classes of antihypertensive drugs) × (sum of doses). 15 hospitals in China participated in the study and 220 patients were enrolled in a 1:1 ratio (msRDN vs Sham). The key inclusion criteria included: age (18-65 years old), history of essential HTN (at least 6 months), heart rate (≥70 bpm), OSBP (≥150 mmHg and ≤180 mmHg), ambulatory BP monitoring (ABPM, 24-h SBP ≥130 mmHg or daytime SBP ≥135 mmHg or nighttime SBP ≥120 mmHg), renal artery stenosis (<50%) and renal function (eGFR >45 mL/min/1.73 m2). The catheter with both stimulation and ablation functions was inserted in the distal renal main artery. The RDN site (hot spot) was selected if SBP increased (≥5 mmHg) by intra-renal artery (RA) electrical stimulation; an adequate RDN was confirmed by repeated electronic stimulation if no increase in BP otherwise, a 2nd ablation was performed at the same site. At sites where there was decreased SBP (≥5 mmHg, cold spot) or no BP response (neutral spot) to stimulation, no ablation was performed. The mapping, ablation and confirmation procedure was repeated until the entire renal main artery had been tested then either treated or avoided. After msRDN, patients had to follow a predefined, vigorous drug titration regimen in order to achieve target OSBP (<140 mmHg). Drug adherence was monitored by liquid chromatography-tandem mass spectrometry analysis using urine. This study is registered with ClinicalTrials.gov (NCT02761811) and 5-year follow-up is ongoing. Findings: Between July 8, 2016 and February 23, 2022, 611 patients were consented, 220 patients were enrolled in the study who received standardized antihypertensive drug treatments (at least two drugs) for at least 28 days, presented OSBP ≥150 mmHg and ≤180 mmHg and met all inclusion and exclusion criteria. In left RA and right RA, mapped sites were 8.2 (3.0) and 8.0 (2.7), hot/ablated sites were 3.7 (1.4) and 4.0 (1.6), cold spots were 2.4 (2.6) and 2.0 (2.2), neutral spots were 2.0 (2.1) and 2.0 (2.1), respectively. Hot, cold and neutral spots was 48.0%, 27.5% and 24.4% of total mapped sites, respectively. At 6 M, the Control Rate of OSBP was comparable between msRDN and Sham group (95.4% vs 92.8%, p = 0.429), achieved non-inferiority margin -10% (2.69%; 95% CI -4.11%, 9.83%, p < 0.001 for non-inferiority); the change in Drug Index was significantly lower in msRDN group compared to Sham group (4.37 (6.65) vs 7.61 (10.31), p = 0.010) and superior to Sham group (-3.25; 95% CI -5.56, -0.94, p = 0.003), indicating msRDN patients need significantly fewer drugs to control OSBP <140 mmHg. 24-hour ambulatory SBP decreased from 146.8 (13.9) mmHg by 10.8 (14.1) mmHg, and from 149.8 (12.8) mmHg by 10.0 (14.0) mmHg in msRDN and Sham groups, respectively (p < 0.001 from Baseline; p > 0.05 between groups). Safety profiles were comparable between msRDN and Sham groups, demonstrating the safety and efficacy of renal mapping/selective RDN to treat uncontrolled HTN. Interpretation: The msRDN therapy achieved the goals of reducing the drug burden of HTN patients and controlling OSBP <140 mmHg, with only approximately four targeted ablations per renal main artery, much lower than in previous trials. Funding: SyMap Medical (Suzhou), LTD, Suzhou, China.

3.
Heart Rhythm ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38750908

RESUMO

BACKGROUND: Cardiac sodium channel NaV1.5 encoded by SCN5A is associated with arrhythmia disorders. However, the molecular mechanism underlying NaV1.5 expression remains to be fully elucidated. Previous studies have reported that 14-3-3 family acts as an adaptor involved in regulating kinetic characteristics of cardiac ion channels. OBJECTIVE: The purpose of this study was to establish 14-3-3ε/YWHAE, a member of 14-3-3 family, as a crucial regulator of NaV1.5 and explore the potential role of 14-3-3ε in the heart. METHODS: Western blotting, patch-clamping, real-time RT-PCR, RNA immunoprecipitation, electrocardiogram recording, echocardiography and histological analysis were performed. RESULTS: YWHAE overexpression significantly reduced the expression level of SCN5A mRNA and sodium current density, whereas YWHAE knockdown significantly increased SCN5A mRNA expression and sodium current density in HEK293/NaV1.5 and H9c2 cells. Similar results were observed in mice injected with adeno-associated virus serotype 9 (AAV9)-mediated YWHAE knockdown. The effect of 14-3-3ε on NaV1.5 expression was abrogated by knockdown of TBX5, a transcription factor of NaV1.5. An interaction between 14-3-3ε protein and TBX5 mRNA was identified, and YWHAE overexpression significantly decreased TBX5 mRNA stability without affecting SCN5A mRNA stability. Additionally, mice subjected to AAV9-mediated YWHAE knockdown exhibited shorter R-R intervals and higher prevalence of premature ventricular contractions. CONCLUSION: Our data unveil a novel regulatory mechanism of NaV1.5 by 14-3-3ε, and highlight the significance of 14-3-3ε in transcriptional regulation of NaV1.5 expression and cardiac arrhythmias.

4.
Inflamm Res ; 73(6): 929-943, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38642079

RESUMO

OBJECTIVES: Intimal hyperplasia is a serious clinical problem associated with the failure of therapeutic methods in multiple atherosclerosis-related coronary heart diseases, which are initiated and aggravated by the polarization of infiltrating macrophages. The present study aimed to determine the effect and underlying mechanism by which tumor necrosis factor receptor-associated factor 5 (TRAF5) regulates macrophage polarization during intimal hyperplasia. METHODS: TRAF5 expression was detected in mouse carotid arteries subjected to wire injury. Bone marrow-derived macrophages, mouse peritoneal macrophages and human myeloid leukemia mononuclear cells were also used to test the expression of TRAF5 in vitro. Bone marrow-derived macrophages upon to LPS or IL-4 stimulation were performed to examine the effect of TRAF5 on macrophage polarization. TRAF5-knockout mice were used to evaluate the effect of TRAF5 on intimal hyperplasia. RESULTS: TRAF5 expression gradually decreased during neointima formation in carotid arteries in a time-dependent manner. In addition, the results showed that TRAF5 expression was reduced in classically polarized macrophages (M1) subjected to LPS stimulation but was increased in alternatively polarized macrophages (M2) in response to IL-4 administration, and these changes were demonstrated in three different types of macrophages. An in vitro loss-of-function study with TRAF5 knockdown plasmids or TRAF5-knockout mice revealed high expression of markers associated with M1 macrophages and reduced expression of genes related to M2 macrophages. Subsequently, we incubated vascular smooth muscle cells with conditioned medium of polarized macrophages in which TRAF5 expression had been downregulated or ablated, which promoted the proliferation, migration and dedifferentiation of VSMCs. Mechanistically, TRAF5 knockdown inhibited the activation of anti-inflammatory M2 macrophages by directly inhibiting PPARγ expression. More importantly, TRAF5-deficient mice showed significantly aggressive intimal hyperplasia. CONCLUSIONS: Collectively, this evidence reveals an important role of TRAF5 in the development of intimal hyperplasia through the regulation of macrophage polarization, which provides a promising target for arterial restenosis-related disease management.


Assuntos
Hiperplasia , Macrófagos , Camundongos Endogâmicos C57BL , Camundongos Knockout , PPAR gama , Fator 5 Associado a Receptor de TNF , Animais , Macrófagos/metabolismo , Fator 5 Associado a Receptor de TNF/genética , Fator 5 Associado a Receptor de TNF/metabolismo , PPAR gama/metabolismo , PPAR gama/genética , Masculino , Camundongos , Humanos , Artérias Carótidas/patologia , Neointima/patologia , Neointima/metabolismo , Interleucina-4/genética , Células Cultivadas , Túnica Íntima/patologia , Lipopolissacarídeos/farmacologia
5.
Metabolism ; 155: 155832, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38438106

RESUMO

Interleukin (IL)-6 has anti- and pro-inflammatory functions, controlled by IL-6 classic and trans-signaling, respectively. Differences in the downstream signaling mechanism between IL-6 classic and trans-signaling have not been identified. Here, we report that IL-6 activates glycolysis to regulate the inflammatory response. IL-6 regulates glucose metabolism by forming a complex containing signal-transducing activators of transcription 3 (STAT3), hexokinase 2 (HK2), and voltage-dependent anion channel 1 (VDAC1). The IL-6 classic signaling directs glucose flux to oxidative phosphorylation (OxPhos), while IL-6 trans-signaling directs glucose flux to anaerobic glycolysis. Classic IL-6 signaling promotes STAT3 translocation into mitochondria to interact with pyruvate dehydrogenase kinase-1 (PDK1), leading to pyruvate dehydrogenase α (PDHA) dissociation from PDK1. As a result, PDHA is dephosphorylated, and STAT3 is phosphorylated at Ser727. By contrast, IL-6 trans-signaling promotes the interaction of sirtuin 2 (SIRT2) and lactate dehydrogenase A (LDHA), leading to the dissociation of STAT3 from SIRT2. As a result, LDHA is deacetylated, and STAT3 is acetylated and phosphorylated at Tyr705. IL-6 classic signaling promotes the differentiation of regulatory T cells via the PDK1/STAT3/PDHA axis, whereas IL-6 trans-signaling promotes the differentiation of Th17 cells via the SIRT2/STAT3/LDHA axis. Conclusion: IL-6 classic signaling generates anti-inflammatory functions by shifting energy metabolism to OxPhos, while IL-6 trans-signaling generates pro-inflammatory functions by shifting energy metabolism to anaerobic glycolysis.


Assuntos
Glucose , Interleucina-6 , Piruvato Desidrogenase Quinase de Transferência de Acetil , Fator de Transcrição STAT3 , Transdução de Sinais , Interleucina-6/metabolismo , Glucose/metabolismo , Animais , Transdução de Sinais/fisiologia , Fator de Transcrição STAT3/metabolismo , Camundongos , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Glicólise/fisiologia , Humanos , Inflamação/metabolismo , Fosforilação Oxidativa , Hexoquinase/metabolismo , Fosforilação , Camundongos Endogâmicos C57BL , Reprogramação Metabólica
6.
Sci Rep ; 14(1): 3269, 2024 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-38332169

RESUMO

Continuous monitoring of cardiac motions has been expected to provide essential cardiac physiology information on cardiovascular functioning. A fiber-optic micro-vibration sensing system (FO-MVSS) makes it promising. This study aimed to explore the correlation between Ballistocardiography (BCG) waveforms, measured using an FO-MVSS, and myocardial valve activity during the systolic and diastolic phases of the cardiac cycle in participants with normal cardiac function and patients with congestive heart failure (CHF). A high-sensitivity FO-MVSS acquired continuous BCG recordings. The simultaneous recordings of BCG and electrocardiogram (ECG) signals were obtained from 101 participants to examine their correlation. BCG, ECG, and intracavitary pressure signals were collected from 6 patients undergoing cardiac catheter intervention to investigate BCG waveforms and cardiac cycle phases. Tissue Doppler imaging (TDI) measured cardiac time intervals in 51 participants correlated with BCG intervals. The BCG recordings were further validated in 61 CHF patients to assess cardiac parameters by BCG. For heart failure evaluation machine learning was used to analyze BCG-derived cardiac parameters. Significant correlations were observed between cardiac physiology parameters and BCG's parameters. Furthermore, a linear relationship was found betwen IJ amplitude and cardiac output (r = 0.923, R2 = 0.926, p < 0.001). Machine learning techniques, including K-Nearest Neighbors (KNN), Decision Tree Classifier (DTC), Support Vector Machine (SVM), Logistic Regression (LR), Random Forest (RF), and XGBoost, respectively, demonstrated remarkable performance. They all achieved average accuracy and AUC values exceeding 95% in a five-fold cross-validation approach. We establish an electromagnetic-interference-free and non-contact method for continuous monitoring of the cardiac cycle and myocardial contractility and measure the different phases of the cardiac cycle. It presents a sensitive method for evaluating changes in both cardiac contraction and relaxation in the context of heart failure assessment.


Assuntos
Balistocardiografia , Insuficiência Cardíaca , Humanos , Balistocardiografia/métodos , Insuficiência Cardíaca/diagnóstico por imagem , Coração , Eletrocardiografia/métodos , Contração Miocárdica/fisiologia
7.
Nat Commun ; 15(1): 1698, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402199

RESUMO

Quantum interference between reaction pathways around a conical intersection (CI) is an ultrasensitive probe of detailed chemical reaction dynamics. Yet, for the hydrogen exchange reaction, the difference between contributions of the two reaction pathways increases substantially as the energy decreases, making the experimental observation of interference features at low energy exceedingly challenging. We report in this paper a combined experimental and theoretical study on the H + HD → H2 + D reaction at the collision energy of 1.72 eV. Although the roaming insertion pathway constitutes only a small fraction (0.088%) of the overall contribution, angular oscillatory patterns arising from the interference of reaction pathways were clearly observed in the backward scattering direction, providing direct evidence of the geometric phase effect at an energy of 0.81 eV below the CI. Furthermore, theoretical analysis reveals that the backward interference patterns are mainly contributed by two distinct groups of partial waves (J ~ 10 and J ~ 19). The well-separated partial waves and the geometric phase collectively influence the quantum reaction dynamics.

8.
Am J Hypertens ; 37(1): 46-52, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36634025

RESUMO

BACKGROUND: P21-activated kinase 1 (Pak1) has an effect on cell apoptosis and has recently been reported to play an important role in various cardiovascular diseases, in which vascular smooth muscle cell (VSMC) apoptosis is a key process. Thus, we hypothesized that Pak1 may be a novel target to regulate VSMC behaviors. METHODS AND RESULTS: In the present study, we found that the expression of Pak1 was dramatically upregulated in vascular smooth muscle cells (VSMCs) on H2O2 administration and was dependent on stimulation time. Through a loss-of-function approach, Pak1 knockdown increased apoptosis of VSMCs, as tested by TUNEL (TdT-mediated dUTP Nick-End Labeling) immunofluorescence staining, whereas it inhibited the proliferation of VSMCs examined by EdU staining. Moreover, we also noticed that Pak1 silencing promoted the mRNA and protein levels of pro-apoptosis genes but decreased anti-apoptosis marker expression. Importantly, we showed that Pak1 knockdown reduced the phosphorylation of Bad. Moreover, increased Pak1 expression was also noticed in carotid arteries on the wire jury. CONCLUSIONS: Our study identified that Pak1 acted as a novel regulator of apoptosis of VSMCs partially through phosphorylation of Bad.


Assuntos
Músculo Liso Vascular , Quinases Ativadas por p21 , Fosforilação , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo , Quinases Ativadas por p21/farmacologia , Músculo Liso Vascular/metabolismo , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Apoptose , Miócitos de Músculo Liso/metabolismo , Proliferação de Células , Células Cultivadas
10.
Basic Res Cardiol ; 119(1): 57-74, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38151579

RESUMO

Cardiac sympathetic overactivation is a critical driver in the progression of acute myocardial infarction (AMI). The left middle cervical ganglion (LMCG) is an important extracardiac sympathetic ganglion. However, the regulatory effects of LMCG on AMI have not yet been fully documented. In the present study, we detected that the LMCG was innervated by abundant sympathetic components and exerted an excitatory effect on the cardiac sympathetic nervous system in response to stimulation. In canine models of AMI, targeted ablation of LMCG reduced the sympathetic indexes of heart rate variability and serum norepinephrine, resulting in suppressed cardiac sympathetic activity. Moreover, LMCG ablation could improve ventricular electrophysiological stability, evidenced by the prolonged ventricular effective refractory period, elevated action potential duration, increased ventricular fibrillation threshold, and enhanced connexin43 expression, consequently showing antiarrhythmic effects. Additionally, compared with the control group, myocardial infarction size, circulating cardiac troponin I, and myocardial apoptosis were significantly reduced, accompanied by preserved cardiac function in canines subjected to LMCG ablation. Finally, we performed the left stellate ganglion (LSG) ablation and compared its effects with LMCG destruction. The results indicated that LMCG ablation prevented ventricular electrophysiological instability, cardiac sympathetic activation, and AMI-induced ventricular arrhythmias with similar efficiency as LSG denervation. In conclusion, this study demonstrated that LMCG ablation suppressed cardiac sympathetic activity, stabilized ventricular electrophysiological properties and mitigated cardiomyocyte death, resultantly preventing ischemia-induced ventricular arrhythmias, myocardial injury, and cardiac dysfunction. Neuromodulation therapy targeting LMCG represented a promising strategy for the treatment of AMI.


Assuntos
Infarto do Miocárdio , Animais , Cães , Arritmias Cardíacas , Coração/inervação , Fibrilação Ventricular/etiologia , Fibrilação Ventricular/prevenção & controle , Gânglios Simpáticos/metabolismo
11.
JACC Asia ; 3(5): 805-816, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38095010

RESUMO

Background: Cryoballoon ablation (CBA) has emerged as an effective treatment for atrial fibrillation (AF). Objectives: This study sought to assess the performance of a novel liquid nitrogen-driven CBA system and evaluate its safety and efficacy in the treatment of drug-resistant paroxysmal atrial fibrillation (PAF). Methods: This was a prospective multicenter single-arm clinical trial with 10 participating tertiary hospitals enrolling 176 patients with PAF. All participants received liquid nitrogen-driven CBA developed by the Cryofocus Medtech Company. Scheduled follow-up was performed before discharge and 3 months, 6 months, and 12 months after CBA. The primary endpoints were defined as 1) treatment success (freedom from antiarrhythmic drugs and atrial tachycardia at 12 months after CBA); and 2) immediate success rate of pulmonary vein isolation. The safety endpoint was the incidence of device- and procedure-related adverse events (AEs) and all-cause mortality. Results: A total of 172 participants were included, with an average age of 59.22 ± 9.25 years and 99 (57.56%) of them men. Immediate success rate was 97.67% (95% CI: 94.15%-99.36%) and 12-month treatment success rate was 82.56% (95% CI: 76.89%-88.23%), including a late recurrence rate of 13.61%. Incidences of device- and procedure-related AEs were 2.27% and 25.00%, respectively. Phrenic nerve palsy (PNP) occurred in 6 patients, of which 5 recovered during follow-up. Although the incidence of total severe AEs was 17.05%, including an all-cause mortality of 0.57%, only 1 case of permanent PNP was related to the CBA procedure. Conclusions: This premarketing prospective multicenter single-arm clinical trial demonstrated that the liquid nitrogen cryoablation system is safe and effective in the treatment of PAF.

12.
Front Pharmacol ; 14: 1291896, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026938

RESUMO

Background: Adverse effects of intravenous digoxin vary from patients and disease status, which should be closely monitored. Aims: To explore the safety profile of intravenous digoxin in acute heart failure with reduced ejection fraction (HFrEF) among Chinese patients. Methods: A clinical prospective, single-center, single-arm, open-label exploratory clinical trial was performed in patients with acute HFrEF at Wuhan Asia Heart Hospital. A fixed dose of 0.5 mg digoxin was used intravenously once per day for 3 days. The normalized dosage of digoxin (NDD), toxic serum digoxin concentration (SDC), and adverse reactions of intravenous digoxin were recorded. Results: A total of 40 patients were recruited in the study. The SDC increased from 1.03 ± 0.34 ng/mL to 1.95 ± 0.52 ng/mL during treatment. 50% (20/40) patients reached a toxic SDC of 2.0 ng/mL, and toxic effects were seen in 30% (12/40) patients. Estimated glomerular filtration rate (eGFR) < 60 mL/min [HR: 5.269; 95% CI: 1.905-14.575, p = 0.001], NDD ≥7 µg/kg [HR: 3.028; 95% CI: 1.119-8.194, p = 0.029], and ischemic cardiomyopathy [HR: 2.658; 95% CI: 1.025-6.894, p = 0.044] were independent risk factors for toxic SDC. Toxic SDC was effectively identified [area under the receiver operating characteristic (ROC) curve = 0.85, p < 0.001] using this model, and patients would have a higher risk of toxicity with more risk factors. Conclusion: Intravenous digoxin of 0.5 mg was safe and effective for initial dose but not suitable for maintenance treatment in Chinese patients with acute HFrEF. Patients who had lower eGFR, received higher NDD, and had ischemic cardiomyopathy should be closely monitored to avoid digoxin toxicity.

13.
J Adv Res ; 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37806546

RESUMO

INTRODUCTION: Cardiac hypertrophy is an important contributor of heart failure, and the mechanisms remain unclear. Leucine zipper protein 1 (LUZP1) is essential for the development and function of cardiovascular system; however, its role in cardiac hypertrophy is elusive. OBJECTIVES: This study aims to investigate the molecular basis of LUZP1 in cardiac hypertrophy and to provide a rational therapeutic approach. METHODS: Cardiac-specific Luzp1 knockout (cKO) and transgenic mice were established, and transverse aortic constriction (TAC) was used to induce pressure overload-induced cardiac hypertrophy. The possible molecular basis of LUZP1 in regulating cardiac hypertrophy was determined by transcriptome analysis. Neonatal rat cardiomyocytes were cultured to elucidate the role and mechanism of LUZP1 in vitro. RESULTS: LUZP1 expression was progressively increased in hypertrophic hearts after TAC surgery. Gain- and loss-of-function methods revealed that cardiac-specific LUZP1 deficiency aggravated, while cardiac-specific LUZP1 overexpression attenuated pressure overload-elicited hypertrophic growth and cardiac dysfunction in vivo and in vitro. Mechanistically, the transcriptome data identified Stat3 pathway as a key downstream target of LUZP1 in regulating pathological cardiac hypertrophy. Cardiac-specific Stat3 deletion abolished the pro-hypertrophic role in LUZP1 cKO mice after TAC surgery. Further findings suggested that LUZP1 elevated the expression of Src homology region 2 domain-containing phosphatase 1 (SHP1) to inactivate Stat3 pathway, and SHP1 silence blocked the anti-hypertrophic effects of LUZP1 in vivo and in vitro. CONCLUSION: We demonstrate that LUZP1 attenuates pressure overload-induced cardiac hypertrophy through inhibiting Stat3 signaling, and targeting LUZP1 may develop novel approaches to treat pathological cardiac hypertrophy.

14.
J Cardiovasc Dev Dis ; 10(10)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37887869

RESUMO

Immune checkpoint inhibitors (ICIs) have emerged as a powerful and efficacious therapeutic approach for many cancer patients. Sintilimab is a fully human IgG4 monoclonal antibody that binds with programmed cell death receptor-1 (PD-1) to block its interaction with ligands, thereby enhancing the antitumor effects of T cells. However, ICIs may induce immune-related adverse events (irAEs) in various systems and organs, with fulminant myocarditis being the most severe one. We report the case of a 45-year-old female with gastric cancer who developed chest pain two weeks after chemotherapy with sintilimab; she was diagnosed with immune-associated fulminant myocarditis and experienced an Adams-Stokes syndrome attack in the hospital. Eventually, she was discharged after being treated with methylprednisolone, immunoglobulin, and an IABP.

15.
PeerJ ; 11: e16214, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37872948

RESUMO

Background: Septic cardiomyopathy (SC) is characterized by myocardial dysfunction caused by sepsis and constitutes one of the serious complications of sepsis. Pyroptosis is a unique proinflammatory programmed cell death process. However, the role of pyroptosis in the development of SC remains unclear, and further study is required. The purpose of this study is to identify pyroptosis-related genes (PRGs) in SC and explore the mechanism of pyroptosis involved in the regulation of SC formation and progression. Methods: Differential expression analysis and enrichment analysis were performed on the SC-related dataset GSE79962 to identify differentially expressed genes (DEGs). PRGs were screened by intersecting genes associated with pyroptosis in previous studies with the DEGs obtained from GSE79962. The expression pattern of them was studied based on their raw expression data. Additionally, corresponding online databases were used to predict miRNAs, transcription factors (TFs) and therapeutic agents of PRGs. Lipopolysaccharide (LPS)-induced cell damage models in H9C2 and AC16 cell lines were constructed, cell activity was detected by CCK-8 and cell pyroptosis were detected by Hoechst33342/PI staining. Furthermore, these PRGs were verified in the external datasets (GSE53007 and GSE142615) and LPS-induced cell damage model. Finally, the effect of siRNA-mediated PRGs knockdown on the pyroptosis phenotype was examined. Results: A total of 1,206 DEGs were screened, consisting of 663 high-expressed genes and 543 low-expressed genes. Among them, ten PRGs (SOD2, GJA1, TIMP3, TAP1, TIMP1, NOD1, TP53, CPTP, CASP1 and SAT1) were identified, and they were mainly enriched in "Pyroptosis", "Ferroptosis", "Longevity regulating pathway", and "NOD-like receptor signaling pathway". A total of 147 miRNAs, 31 TFs and 13 therapeutic drugs were predicted targeting the PRGs. The expression trends of SOD2 were confirmed in both the external datasets and LPS-induced cell damage models. Knockdown of SOD2 induced increased pyroptosis in the AC16 LPS-induced cell damage model. Conclusions: In this study, we demonstrated that SOD2 is highly expressed in both the SC and LPS-induced cell damage models. Knockdown of SOD2 led to a significant increase in pyroptosis in the AC16 LPS-induced cell damage model. These findings suggest that SOD2 may serve as a potential target for the diagnosis and treatment of SC.


Assuntos
Cardiomiopatias , MicroRNAs , Sepse , Humanos , Piroptose , Lipopolissacarídeos , Perfilação da Expressão Gênica , Cardiomiopatias/genética
16.
Immun Ageing ; 20(1): 50, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37759225

RESUMO

BACKGROUND: Age-associated changes in immunity are inextricably linked to chronic inflammation and age-related diseases, the impact of aging on monocyte subsets is poorly understood. METHODS: Flow cytometry was applied to distinguish three monocyte subsets between 120 young and 103 aged individuals. We then analyzed the expression profiles of three monocyte subsets from 9 young and 9 older donors and CD14+ monocytes from 1202 individuals between 44 and 83 years old. Flow cytometry was used to measure ß-galactosidase activities, ROS levels, mitochondrial contents, mitochondrial membrane potentials (MMPs) and intracellular IL-6 levels in three monocyte subsets of young and elderly individuals, and plasma IL-6 levels were detected by electrochemiluminescence immunoassay. Mitochondrial stress and glycolytic rate of CD14+ monocytes from young and aged individuals were measured by Seahorse XFe24 Analyzer. RESULTS: Compared with young individuals, the percentage of classical subset in aged persons significantly decreased, while the proportion of nonclassical subset increased. Age-related differential genes were obviously enriched in cellular senescence, ROS, oxidative phosphorylation, mitochondrial respiratory chain, IL-6 and ribosome-related pathways. Compared with young individuals, the ß-galactosidase activities, ROS contents, intracellular IL-6 levels of three monocyte subsets, and plasma IL-6 levels in aged individuals were significantly elevated, while the MMPs apparently declined with age and the mitochondrial contents were only increased in intermediate and nonclassical subsets. CD14+ monocytes from elderly adults had conspicuously lower basal and spare respiratory capacity and higher basal glycolysis than those from young individuals. CONCLUSIONS: During aging, monocytes exhibited senescence-associated secretory phenotype, mitochondrial dysfunction, decreased oxidative phosphorylation and increased glycolysis and the nonclassical subset displayed the clearest features of aging. Our study comprehensively investigated age-related transcriptional alterations of three monocyte subsets and identified the pivotal pathways of monocyte senescence, which may have significant implications for tactics to alleviate age-related conditions.

17.
Curr Med Sci ; 43(6): 1206-1212, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37755635

RESUMO

OBJECTIVE: There is a large population of patients classified as complex higher-risk and indicated patients (CHIPs) in China with a poor prognosis. The treatment of these patients is complex and challenging, especially when acute cardiac events occur, such as acute coronary syndrome (ACS) or heart failure. Pharmacotherapy and some mechanical circulatory support (MCS) therapeutic devices can provide stable hemodynamic support for CHIPs-percutaneous coronary intervention (PCI). LDL-C is an important pathogenic factor in atherosclerosis, and the target of blood lipid control. Recent studies have revealed that lipoprotein(a) [Lp(a)], which is formed when a covalent bond between apolipoprotein(a) and apolipoprotein B-100 is made, produces an LDL-like particle. This particle is an independent risk factor for the development of atherosclerosis, and is closely correlated to stent thrombosis and restenosis. Furthermore, this requires active intervention. PCSK9 inhibitors have been used in lipid-lowering treatment, and preventing atherosclerosis. The present study explores the efficacy of PCSK9 inhibitors in CHIPs-ACS, and the association between the change in Lp(a) and survival after 2 years of follow-up. METHODS: The present real-world, prospective control study enrolled 321 CHIPs-ACS who underwent emergency PCI from August 2019 to November 2020, and these patients were followed up for 2 years. These patients were divided into two groups: PCSK9 group (n=161) given the combined PCSK9 inhibitor (140 mg of evolocumab every 2 weeks) and statins-based therapy, and SOC group (n=160) treated with statin-based lipid-lowering therapy alone. Then, the change in lipid index was measured, and the cardiovascular (CV) event recurrence rate was evaluated after one month and 2 years. Afterwards, the contribution of serum lipid parameters, especially the Lp(a) alteration, in patients with earlier initiation of the PCSK9 inhibitor to the CV outcome was analyzed. RESULTS: The LDL-C level was significantly reduced in both groups: 52.3% in the PCSK9 group and 32.3% (P<0.001) in the SOC group. It is noteworthy that the Lp(a) level decreased by 13.2% in the PCSK9 group, but increased by 30.3% in the SOC group (P<0.001). Furthermore, the number of CV events was not significantly different between the PCSK9 and SOC groups after the 2-year follow-up period. In the PCSK9 group, the Lp(a) reduction was associated with the baseline Lp(a) levels of the patients (r2 =-0.315, P<0.001). Moreover, the decrease in Lp(a) contributed to the decline in CV events in patients who received ACS CHIPs-PCI, and the decrease in Lp(a) level was independent of the LDL-C level reduction. CONCLUSION: The early initiation of PCSK9 inhibitors can significantly reduce the LDL-C and Lp(a) levels in ACS CHIPs-PCI. However, further studies are needed to confirm whether PCSK9 inhibitors can reduce the incidence of CV disease in CHIPs.


Assuntos
Síndrome Coronariana Aguda , Aterosclerose , Inibidores de Hidroximetilglutaril-CoA Redutases , Intervenção Coronária Percutânea , Humanos , Pró-Proteína Convertase 9 , Lipoproteína(a) , LDL-Colesterol , Inibidores de PCSK9 , Estudos Prospectivos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Aterosclerose/tratamento farmacológico , Lipídeos , Síndrome Coronariana Aguda/tratamento farmacológico
18.
Front Immunol ; 14: 1209970, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37675125

RESUMO

O-GlcNAcylation is a post-translational modification of proteins that involves the addition of O-GlcNAc to serine or threonine residues of nuclear or cytoplasmic proteins, catalyzed by O-GlcNAc transferase (OGT). This modification is highly dynamic and can be reversed by O-GlcNAcase (OGA). O-GlcNAcylation is widespread in the immune system, which engages in multiple physiologic and pathophysiologic processes. There is substantial evidence indicating that both the hexosamine biosynthesis pathway (HBP) and O-GlcNAcylation are critically involved in regulating immune cell function. However, the precise role of O-GlcNAcylation in the immune system needs to be adequately elucidated. This review offers a thorough synopsis of the present research on protein O-GlcNAcylation, accentuating the molecular mechanisms that control immune cells' growth, maturation, and performance via this PTM.


Assuntos
Acetilglucosaminidase , Processamento de Proteína Pós-Traducional , Proliferação de Células , Ciclo Celular , Projetos de Pesquisa
19.
Nat Commun ; 14(1): 5343, 2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660168

RESUMO

MAVS is an adapter protein involved in RIG-I-like receptor (RLR) signaling in mitochondria, peroxisomes, and mitochondria-associated ER membranes (MAMs). However, the role of MAVS in glucose metabolism and RLR signaling cross-regulation and how these signaling pathways are coordinated among these organelles have not been defined. This study reports that RLR action drives a switch from glycolysis to the pentose phosphate pathway (PPP) and the hexosamine biosynthesis pathway (HBP) through MAVS. We show that peroxisomal MAVS is responsible for glucose flux shift into PPP and type III interferon (IFN) expression, whereas MAMs-located MAVS is responsible for glucose flux shift into HBP and type I IFN expression. Mechanistically, peroxisomal MAVS interacts with G6PD and the MAVS signalosome forms at peroxisomes by recruiting TNF receptor-associated factor 6 (TRAF6) and interferon regulatory factor 1 (IRF1). By contrast, MAMs-located MAVS interact with glutamine-fructose-6-phosphate transaminase, and the MAVS signalosome forms at MAMs by recruiting TRAF6 and TRAF2. Our findings suggest that MAVS mediates the interaction of RLR signaling and glucose metabolism.


Assuntos
Via de Pentose Fosfato , Fator 6 Associado a Receptor de TNF , Proteínas Adaptadoras de Transdução de Sinal , Glucose , Glicólise , Hexosaminas , Humanos , Animais , Camundongos , Transdução de Sinais
20.
J Inflamm Res ; 16: 3169-3184, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37525634

RESUMO

Background: Coronary artery disease (CAD) is a multifactorial immune disease, but research into the specific immune mechanism is still needed. The present study aimed to identify novel immune-related markers of CAD. Methods: Three CAD-related datasets (GSE12288, GSE98583, GSE113079) were downloaded from the Gene Expression Integrated Database. Gene ontology annotation, Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis and weighted gene co-expression network analysis were performed on the common significantly differentially expressed genes (DEGs) of these three data sets, and the most relevant module genes for CAD obtained. The immune cell infiltration of module genes was evaluated with the CIBERSORT algorithm, and characteristic genes accompanied by their diagnostic effectiveness were screened by the machine-learning algorithm least absolute shrinkage and selection operator (LASSO) regression analysis. The expression levels of characteristic genes were evaluated in the peripheral blood mononuclear cells of CAD patients and healthy controls for verification. Results: A total of 204 upregulated and 339 downregulated DEGs were identified, which were mainly enriched in the following pathways: "Apoptosis", "Th17 cell differentiation", "Th1 and Th2 cell differentiation", "Glycerolipid metabolism", and "Fat digestion and absorption". Five characteristic genes, LMAN1L, DOK4, CHFR, CEL and CCDC28A, were identified by LASSO analysis, and the results of the immune cell infiltration analysis indicated that the proportion of immune infiltrating cells (activated CD8 T cells and CD56 DIM natural killer cells) in the CAD group was lower than that in the control group. The expressions of CHFR, CEL and CCDC28A in the peripheral blood of the healthy controls and CAD patients were significantly different. Conclusion: We identified CHFR, CEL and CCDC28A as potential biomarkers related to immune infiltration in CAD based on public data sets and clinical samples. This finding will contribute to providing a potential target for early noninvasive diagnosis and immunotherapy of CAD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA