Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
J Cell Physiol ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38529784

RESUMO

Maternal histone methyltransferase is critical for epigenetic regulation and development of mammalian embryos by regulating histone and DNA modifications. Here, we reported a novel mechanism by revealing the critical effects of maternal Ezh1/2 deletion on mitochondria in MII oocytes and early embryos in mice. We found that Ezh1/2 knockout in mouse MII oocytes impaired the structure of mitochondria and decreased its number, but membrane potential and respiratory function of mitochondrion were increased. The similar effects of Ezh1/2 deletion have been observed in 2-cell and morula embryos, indicating that the effects of maternal Ezh1/2 deficiency on mitochondrion extend to early embryos. However, the loss of maternal Ezh1/2 resulted in a severe defect of morula: the number, membrane potential, respiratory function, and ATP production of mitochondrion dropped significantly. Content of reactive oxygen species was raised in both MII oocytes and early embryos, suggesting maternal Ezh1/2 knockout induced oxidative stress. In addition, maternal Ezh1/2 ablation interfered the autophagy in morula and blastocyst embryos. Finally, maternal Ezh1/2 deletion led to cell apoptosis in blastocyst embryos in mice. By analyzing the gene expression profile, we revealed that maternal Ezh1/2 knockout affected the expression of mitochondrial related genes in MII oocytes and early embryos. The chromatin immunoprecipitation-polymerase chain reaction assay demonstrated that Ezh1/2 directly regulated the expression of genes Fxyd6, Adpgk, Aurkb, Zfp521, Ehd3, Sgms2, Pygl, Slc1a1, and Chst12 by H3K27me3 modification. In conclusion, our study revealed the critical effect of maternal Ezh1/2 on the structure and function of mitochondria in oocytes and early embryos, and suggested a novel mechanism underlying maternal epigenetic regulation on early embryonic development through the modulation of mitochondrial status.

2.
Plants (Basel) ; 13(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38498446

RESUMO

Odorant-binding proteins (OBPs) play important roles in the insect olfactory system since they bind external odor molecules to trigger insect olfactory responses. Previous studies have identified some plant-derived volatiles that attract the pervasive insect pest Cnaphalocrocis medinalis (Lepidoptera: Pyralidae), such as phenylacetaldehyde, benzyl acetate, 1-heptanol, and hexanal. To characterize the roles of CmedOBPs in the recognition of these four volatiles, we analyzed the binding abilities of selected CmedOBPs to each of the four compounds, as well as the expression patterns of CmedOBPs in different developmental stages of C. medinalis adult. Antennaes of C. medinalis adults were sensitive to the studied plant volatile combinations. Expression levels of multiple CmedOBPs were significantly increased in the antennae of 2-day-old adults after exposure to volatiles. CmedOBP1, CmedOBP6, CmedPBP1, CmedPBP2, and CmedGOBP2 were significantly up-regulated in the antennae of volatile-stimulated female and male adults when compared to untreated controls. Fluorescence competition assays confirmed that CmedOBP1 could strongly bind 1-heptanol, hexanal, and phenylacetaldehyde; CmedOBP15 strongly bound benzyl acetate and phenylacetaldehyde; and CmedOBP26 could weakly bind 1-heptanol. This study lays a theoretical foundation for further analysis of the mechanisms by which plant volatiles can attract C. medinalis. It also provides a technical basis for the future development of efficient plant volatile attractants of C. medinalis.

3.
Plants (Basel) ; 13(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38256738

RESUMO

Plants and insects are engaged in a tight relationship, with phytophagous insects often utilizing volatile organic substances released by host plants to find food and egg-laying sites. Using plant volatiles as attractants for integrated pest management is vital due to its high efficacy and low environmental toxicity. Using naturally occurring plant volatiles combined with insect olfactory mechanisms to select volatile molecules for screening has proved an effective method for developing plant volatile-based attractant technologies. However, the widespread adoption of this technique is still limited by the lack of a complete understanding of molecular insect olfactory pathways. This paper first describes the nature of plant volatiles and the mechanisms of plant volatile perception by insects. Then, the attraction mechanism of plant volatiles to insects is introduced with the example of Cnaphalocrocis medinalis. Next, the progress of the development and utilization of plant volatiles to manage pests is presented. Finally, the functions played by the olfactory system of insects in recognizing plant volatiles and the application prospects of utilizing volatiles for green pest control are discussed. Understanding the sensing mechanism of insects to plant volatiles and its utilization will be critical for pest management in agriculture.

4.
Rice (N Y) ; 17(1): 9, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38244131

RESUMO

Rice leaf folder, Cnaphalocrocis medinalis (Guenée), is one of the most serious pests on rice. At present, chemical control is the main method for controlling this pest. However, the indiscriminate use of chemical insecticides has non-target effects and may cause environmental pollution. Besides, leaf curling behavior by C. medinalis may indirectly reduce the efficacy of chemical spray. Therefore, it is crucial to cultivate efficient rice varieties resistant to this pest. Previous studies have found that three different rice varieties, Zhongzao39 (ZZ39), Xiushui134 (XS134), and Yongyou1540 (YY1540), had varying degrees of infestation by C. medinalis. However, it is currently unclear whether the reason for this difference is related to the difference in defense ability of the three rice varieties against the infestation of C. medinalis. To explore this issue, the current study investigated the effects of three rice varieties on the growth performance and food utilization capability of the 4th instar C. medinalis. Further, it elucidated the differences in defense responses among different rice varieties based on the differences in leaf physiological and biochemical indicators and their impact on population occurrence. The results showed that the larval survival rate was the lowest, and the development period was significantly prolonged after feeding on YY1540. This was not related to the differences in leaf wax, pigments, and nutritional components among the three rice varieties nor to the feeding preferences of the larvae. The rate of superoxide anion production, hydrogen peroxide content, and the activity of three protective enzymes were negatively correlated with larval survival rate, and they all showed the highest in YY1540 leaves. Compared to other tested varieties, although the larvae feeding on YY1540 had higher conversion efficiency of ingested food and lower relative consumption rate, their relative growth was faster, indicating stronger food utilization capability. However, they had a lower accumulation of protein. This suggests that different rice varieties had different levels of oxidative stress after infestation by C. medinalis. The defense response of YY1540 was more intense, which was not conducive to the development of the larvae population. These results will provide new insights into the interaction mechanism between different rice varieties and C. medinalis and provide a theoretical basis for cultivating rice varieties resistant to this pest.

5.
FEBS J ; 291(1): 142-157, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37786383

RESUMO

Decidualization of endometrial stroma is a key step in embryo implantation and its abnormality often leads to pregnancy failure. Stromal decidualization is a very complex process that is co-regulated by estrogen, progesterone and many local factors. The signaling protein SHP2 encoded by PTPN11 is dynamically expressed in decidualized endometrial stroma and mediates and integrates various signals to govern the decidualization. In the present study, we investigate the mechanism of PTPN11 gene transcription. Estrogen, progesterone and cAMP co-induced decidualization of human endometrial stromal cell in vitro, but only progesterone and cAMP induced SHP2 expression. Using the luciferase reporter, we refined a region from -229 bp to +1 bp in the PTPN11 gene promoter comprising the transcriptional core regions that respond to progesterone and cAMP. Progesterone receptor (PGR) and cAMP-responsive element-binding protein 1 (CREB1) were predicted to be transcription factors in this core region by bioinformatic methods. The direct binding of PGR and CREB1 on the PTPN11 promoter was confirmed by electrophoretic mobility and chromatin immunoprecipitation in vitro. Knockdown of PGR and CREB1 protein significantly inhibited the expression of SHP2 induced by medroxyprogesterone acetate and cAMP. These results demonstrate that transcription factors PGR and CREB1 bind to the PTPN11 promoter to regulate the expression of SHP2 in response to decidual signals. Our results explain the transcriptional expression mechanism of SHP2 during decidualization and promote the understanding of the mechanism of decidualization of stromal cells.


Assuntos
Progesterona , Receptores de Progesterona , Feminino , Humanos , Gravidez , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Decídua/metabolismo , Endométrio/metabolismo , Estrogênios , Progesterona/farmacologia , Progesterona/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Células Estromais/metabolismo
6.
Nat Commun ; 14(1): 7356, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37963860

RESUMO

The timely onset of female parturition is a critical determinant for pregnancy success. The highly heterogenous maternal decidua has been increasingly recognized as a vital factor in setting the timing of labor. Despite the cell type specific roles in parturition, the role of the uterine epithelium in the decidua remains poorly understood. This study uncovers the critical role of epithelial SHP2 in parturition initiation via COX1 and COX2 derived PGF2α leveraging epithelial specific Shp2 knockout mice, whose disruption contributes to delayed parturition initiation, dystocia and fetal deaths. Additionally, we also show that there are distinct types of epithelium in the decidua approaching parturition at single cell resolution accompanied with profound epithelium reformation via proliferation. Meanwhile, the epithelium maintains the microenvironment by communicating with stromal cells and macrophages. The epithelial microenvironment is maintained by a close interaction among epithelial, stromal and macrophage cells of uterine stromal cells. In brief, this study provides a previously unappreciated role of the epithelium in parturition preparation and sheds lights on the prevention of preterm birth.


Assuntos
Fenômenos Bioquímicos , Trabalho de Parto , Nascimento Prematuro , Animais , Feminino , Humanos , Recém-Nascido , Camundongos , Gravidez , Parto , Útero
7.
Pestic Biochem Physiol ; 196: 105593, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37945243

RESUMO

The fall armyworm, Spodoptera frugiperda, is a notorious polyphagous pest that causes serious economic losses in crucial crops and has invaded Africa and Asia. Lufenuron is widely used for controlling S. frugiperda in China, owing to its high toxicity against this key pest, and less pollution and little impact on natural enemies. In the present study, the sublethal and transgenerational effects of lufenuron on S. frugiperda were investigated to provide in-depth information for the rational use of lufenuron. Results showed that the development time and pupae weight were not significantly affected following exposure of females to LC10 and LC25 and male S. frugiperda to the LC10 of lufenuron. However, LC25 exposure significantly reduced pupal and total development time and pupae weight of male S. frugiperda. The longevity of S. frugiperda adults was prolonged by lufenuron and the fecundity of S. frugiperda treated with LC10 of lufenuron was significantly increased by 40% compared to the control. In addition, our study demonstrated that the LC25 of lufenuron had transgenerational effects on the progeny generation. The development time of female S. frugiperda whose parents were exposed to LC25 of lufenuron was significantly decreased compared to the control. And then, the expression profiles of Vg, VgR, JHEH, JHE, JHAMT, JHBP, CYP307A1, CYP306A1, CYP302A1 and CYP314A1 genes involved in insect reproduction and development were analyzed using Quantitative Real-Time PCR (RT-qPCR). Results showed that Vg, VgR, JHE, JHAMT, and CYP306A1 were significantly upregulated at the LC10 of lufenuron, which revealed that these upregulated genes might be linked with increased fecundity of S. frugiperda. Taken together, these findings highlighted the importance of sublethal and transgenerational effects under laboratory conditions and these effects may change the population dynamics in the field. Therefore, our study provided valuable information for promoting the rational use of lufenuron for controlling S. frugiperda.


Assuntos
Benzamidas , Reprodução , Feminino , Animais , Spodoptera/genética , Fertilidade , Pupa , Larva
8.
Arch Insect Biochem Physiol ; 114(1): e22030, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37282754

RESUMO

The antioxidant proteins, peroxiredoxins (Prxs), function to protect insects from reactive oxygen species-induced toxicity. In this study, two Prx genes, CsPrx5, and CsPrx6, were cloned and characterized from the paddy field pest, Chilo suppressalis, containing open reading frames of 570 and 672 bp encoding 189 and 223 amino acid polypeptides, respectively. Then, we investigated the influence of various stresses on their expression levels using quantitative real-time PCR (qRT-PCR). The results showed expression of CsPrx5 and CsPrx6 in all developmental stages, with eggs having the highest level. CsPrx5 and CsPrx6 showed higher expression in the epidermis and fat body, and CsPrx6 also showed higher expression in midgut, fat body, and epidermis. Increasing concentrations of insecticides (chlorantraniliprole and spinetoram) and hydrogen peroxide (H2 O2 ) increased the expression levels of CsPrx5 and CsPrx6. In addition, the expression levels of CsPrx5 and CsPrx6 were almost markedly upregulated in larvae under temperature stress or fed by vetiver. Thus, CsPrx5 and CsPrx6 upregulation might increase the C. suppressalis defense response by reducing the impact of environmental stress, providing a better understanding of the relationship between environmental stresses and insect defense systems.


Assuntos
Mariposas , Animais , Mariposas/genética , Mariposas/metabolismo , Estresse Fisiológico/genética , Larva/genética , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo
9.
Toxins (Basel) ; 15(4)2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37104213

RESUMO

Different Cry toxins derived from Bacillus thuringiensis (Bt) possess different insecticidal spectra, whereas insects show variations in their susceptibilities to different Cry toxins. Degradation of Cry toxins by insect midgut extracts was involved in the action of toxins. In this study, we explored the processing patterns of different Cry toxins in Cnaphalocrocis medinalis (Lepidoptera: Crambidae) midgut extracts and evaluated the impact of Cry toxins degradation on their potency against C. medinalis to better understand the function of midgut extracts in the action of different Cry toxins. The results indicated that Cry1Ac, Cry1Aa, and Cry1C toxins could be degraded by C. medinalis midgut extracts, and degradation of Cry toxins by midgut extracts differed among time or concentration effects. Bioassays demonstrated that the toxicity of Cry1Ac, Cry1Aa, and Cry1C toxins decreased after digestion by midgut extracts of C. medinalis. Our findings in this study suggested that midgut extracts play an important role in the action of Cry toxins against C. medinalis, and the degradation of Cry toxins by C. medinalis midgut extracts could reduce their toxicities to C. medinalis. They will provide insights into the action of Cry toxins and the application of Cry toxins in C. medinalis management in paddy fields.


Assuntos
Bacillus thuringiensis , Mariposas , Animais , Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/toxicidade , Proteínas de Bactérias/metabolismo , Mariposas/metabolismo , Endotoxinas/toxicidade , Proteínas Hemolisinas/toxicidade , Extratos Vegetais , Larva/metabolismo
10.
Int J Biol Macromol ; 237: 123949, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36894061

RESUMO

Rice leaffolder (Cnaphalocrocis medinalis) is an important insect pest in paddy fields. Due to their essential role in the physiology and insecticidal resistance, ATP-binding cassette (ABC) proteins were studied in many insects. In this study, we identified the ABC proteins in C. medinalis through genomic data and analyzed their molecular characteristics. A total of 37 sequences with nucleotide-binding domain (NBD) were identified as ABC proteins and belonged to eight families (ABCA-ABCH). Four structure styles of ABC proteins were found in C. medinalis, including full structure, half structure, single structure, and ABC2 structure. In addition to these structures, TMD-NBD-TMD, NBD-TMD-NBD, and NBD-TMD-NBD-NBD were found in C. medinalis ABC proteins. Docking studies suggested that in addition to the soluble ABC proteins, other ABC proteins including ABCC4, ABCH1, ABCG3, ABCB5, ABCG1, ABCC7, ABCB3, ABCA3, and ABCC5 binding with Cry1C had higher weighted scores. The upregulation of ABCB1 and downregulation of ABCB3, ABCC1, ABCC7, ABCG1, ABCG3, and ABCG6 were associated with the C. medinalis response to Cry1C toxin. Collectively, these results help elucidate the molecular characteristics of C. medinalis ABC proteins, pave the way for further functional studies of C. medinalis ABC proteins, including their interaction with Cry1C toxin, and provide potential insecticide targets.


Assuntos
Inseticidas , Mariposas , Oryza , Humanos , Animais , Mariposas/genética , Endotoxinas/genética , Toxinas de Bacillus thuringiensis , Resistência a Inseticidas , Oryza/genética , Proteínas de Insetos
11.
Ecotoxicol Environ Saf ; 253: 114658, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36796207

RESUMO

Pesticide residues have serious environmental impacts on rice-based ecosystems. In rice fields, Chironomus kiiensis and Chironomus javanus provide alternative food sources to predatory natural enemies of rice insect pests, especially when pests are low. Chlorantraniliprole is a substitute for older classes of insecticides and has been used extensively to control rice pests. To determine the ecological risks of chlorantraniliprole in rice fields, we evaluated its toxic effects on certain growth, biochemical and molecular parameters in these two chironomids. The toxicity tests were performed by exposing third-instar larvae to a range of concentrations of chlorantraniliprole. LC50 values at 24 h, 48 h, and 10 days showed that chlorantraniliprole was more toxic to C. javanus than to C. kiiensis. Chlorantraniliprole significantly prolonged the larval growth duration, inhibited pupation and emergence, and decreased egg numbers of C. kiiensis and C. javanus at sublethal dosages (LC10 = 1.50 mg/L and LC25 = 3.00 mg/L for C. kiiensis; LC10 = 0.25 mg/L and LC25 = 0.50 mg/L for C. javanus). Sublethal exposure to chlorantraniliprole significantly decreased the activity of the detoxification enzymes carboxylesterase (CarE) and glutathione S-transferases (GSTs) in both C. kiiensis and C. javanus. Sublethal exposure to chlorantraniliprole also markedly inhibited the activity of the antioxidant enzyme peroxidase (POD) in C. kiiensis and POD and catalase (CAT) in C. javanus. Expression levels of 12 genes revealed that detoxification and antioxidant abilities were affected by sublethal exposures to chlorantraniliprole. There were significant changes in the expression levels of seven genes (CarE6, CYP9AU1, CYP6FV2, GSTo1, GSTs1, GSTd2, and POD) in C. kiiensis and ten genes (CarE6, CYP9AU1, CYP6FV2, GSTo1, GSTs1, GSTd2, GSTu1, GSTu2, CAT, and POD) in C. javanus. These results provide a comprehensive overview of the differences in chlorantraniliprole toxicity to chironomids, indicating that C. javanus is more susceptible and suitable as an indicator for ecological risk assessment in rice ecosystems.


Assuntos
Chironomidae , Inseticidas , Animais , Antioxidantes/farmacologia , Ecossistema , Larva , ortoaminobenzoatos/toxicidade , Inseticidas/toxicidade
12.
Genes (Basel) ; 13(11)2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36421826

RESUMO

The incidence of liver cancer ranks seventh globally, with nearly half of all cases occurring in East Asia, but currently, there are very few drugs to treat it. Our previous studies demonstrated that the signal integration protein Gab2 is a potential drug target for the prevention and therapy of liver cancer. Here, we screened for and identified two miRNAs that target Gab2 to suppress the proliferation and migration of hepatocellular carcinoma (HCC) cells. First, we predicted Gab2-targeting miRNAs through biological websites, and we selected nine miRNAs that were reported in the literature as being abnormally expressed in liver cancer and fatty liver tissue. Then, we measured the expression of these miRNAs in the hepatic epithelial cell line HL-7702 and the HCC cell line HepG2. The expression levels of miR-9, miR-181a, miR-181c, miR-34a, and miR-134 were high in HL-7702 cells but low in HepG2 cells, and their expression patterns were the opposite of Gab2 in these cells. Furthermore, we transfected miR-9, miR-34a, miR-181a, and miR-181c mimics into HepG2 cells and found that only miR-9 and miR-181a reduced the level of Gab2 proteins. miR-9 also reduced the Gab2 mRNA level, but miR-181a did not affect the Gab2 mRNA levels. Using a miRNA-Gab2 3'UTR binding reporter, we confirmed that miR-9 and miR-181a bind to the Gab2 3'UTR region. Finally, we introduced miR-9 and miR-181a mimics into HepG2 cells and found that cell proliferation and migration were significantly inhibited. In conclusion, we identified two novel miRNAs targeting Gab2 and provided potential drug targets for the prevention and treatment of liver cancer.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , Regiões 3' não Traduzidas , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular , Proliferação de Células/genética , Células Hep G2 , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , MicroRNAs/metabolismo
13.
Insects ; 13(11)2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36421949

RESUMO

Cnaphalocrocis medinalis is a destructive migratory rice pest. Although many studies have investigated its behavioral and physiological responses to environmental changes and migration-inducing factors, little is known about its molecular mechanisms. This study was conducted to select suitable RT-qPCR reference genes to facilitate future gene expression studies. Here, thirteen candidate housekeeping genes (EF1α, AK, EF1ß, GAPDH, PGK, RPL13, RPL18, RPS3, 18S rRNA, TBP1, TBP2, ACT, and UCCR) were selected to evaluate their stabilities under different conditions using the ∆CT method; the geNorm, NormFinder, BestKeeper algorithms; and the online tool RefFinder. The results showed that the most stable reference genes were EF1ß, PGK, and RPL18, related to developmental stages; RPS3 and RPL18 in larval tissues; EF1ß and PGK in larvae feeding on different rice varieties; EF1α, EF1ß, and PGK in larvae temperature treatments; PGK and RPL13, related to different adult ages; PGK, EF1α, and ACT, related to adult nutritional conditions; RPL18 and PGK, related to adult mating status; and, RPS3 and PGK, related to different adult take-off characteristics. Our results reveal reference genes that apply to various experimental conditions and will greatly improve the reliability of RT-qPCR analysis for the further study of gene function in this pest.

14.
Int J Biol Macromol ; 223(Pt A): 860-869, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36372110

RESUMO

Chilo suppressalis is a widely distributed pest occurring in nearly all paddy fields, which has developed high level resistance to different classes of insecticides. Vetiver grass has been identified as a dead-end trap plant for the alternative control of C. suppressalis. In this study, two cytochrome P450 monooxygenase (P450) genes, CsCYP6SN3 and CsCYP306A1, were identified and characterized, which are expressed at all developmental stages, with the highest expression in the midguts and fat bodies of 3rd instar larvae. Vetiver significantly inhibited the expression levels of CsCYP6SN3 and CsCYP306A1 in 3rd larvae after feeding. RNA interference showed that silencing CsCYP6SN3 and CsCYP306A1 genes dramatically reduced the pupation rate and pupa weight. Feeding on vetiver after silencing CsCYP6SN3 and CsCYP306A1 led to higher mortality compared with feeding on rice. In conclusion, these findings indicated that the expression levels of CsCYP6SN3 and CsCYP306A1 were associated with the lethal effect of vetiver against C. suppressalis larvae and functional knowledge about these two detoxification genes could provide new targets for agricultural pest control.


Assuntos
Vetiveria , Inseticidas , Mariposas , Oryza , Animais , Larva , Pupa/genética , Inseticidas/farmacologia , Oryza/genética
15.
J Mol Cell Biol ; 14(7)2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36002018

RESUMO

In mammals, the growth and maturation of oocytes within growing follicles largely depends on ovarian granulosa cells (GCs) in response to gonadotropin stimulation. Many signals have been shown to regulate GC proliferation and apoptosis. However, whether the tyrosine phosphatase SHP2 is involved remains unclear. In this study, we identified the crucial roles of SHP2 in modulating GC proliferation and apoptosis. The production of both mature oocytes and pups was increased in mice with Shp2 specifically deleted in ovarian GCs via Fshr-Cre. Shp2 deletion simultaneously promoted GC proliferation and inhibited GC apoptosis. Furthermore, Shp2 deficiency promoted, while Shp2 overexpression inhibited, the proliferation of cultured primary mouse ovarian GCs and the human ovarian granulosa-like tumor cell line KGN in vitro. Shp2 deficiency promoted follicule-stimulating hormone (FSH)-activated phosphorylation of AKT in vivo. SHP2 deficiency reversed the inhibitory effect of hydrogen peroxide (H2O2) on AKT activation in KGN cells. H2O2 treatment promoted the interaction between SHP2 and the p85 subunit of PI3K in KGN cells. Therefore, SHP2 in GCs may act as a negative modulator to balance follicular development by suppressing PI3K/AKT signaling. The novel function of SHP2 in modulating proliferation and apoptosis of GCs provides a potential therapeutic target for the clinical treatment of follicle developmental dysfunction.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Feminino , Camundongos , Humanos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Peróxido de Hidrogênio/metabolismo , Células da Granulosa/metabolismo , Tirosina/metabolismo , Tirosina/farmacologia , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/farmacologia , Mamíferos
16.
Proc Natl Acad Sci U S A ; 119(32): e2206000119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914132

RESUMO

Estrogen and progesterone specify the establishment of uterine receptivity mainly through their respective nuclear receptors, ER and PR. PR is transcriptionally induced by estrogen-ER signaling in the endometrium, but how the protein homeostasis of PR in the endometrium is regulated remains elusive. Here, we demonstrated that the uterine-selective depletion of P38α derails normal uterine receptivity ascribed to the dramatic down-regulation of PR protein and disordered progesterone responsiveness in the uterine stromal compartment, leading to defective implantation and female infertility. Specifically, Ube3c, an HECT family E3 ubiquitin ligase, targets PR for polyubiquitination and thus proteasome degradation in the absence of P38α. Moreover, we discovered that P38α restrains the polyubiquitination activity of Ube3c toward PR by phosphorylating the Ube3c at serine741 . In summary, we provided genetic evidence for the regulation of PR protein stability in the endometrium by P38α and identified Ube3c, whose activity was modulated by P38α-mediated phosphorylation, as an E3 ubiquitin ligase for PR in the uterus.


Assuntos
Implantação do Embrião , Sistema de Sinalização das MAP Quinases , Proteína Quinase 14 Ativada por Mitógeno , Progesterona , Útero , Animais , Implantação do Embrião/fisiologia , Endométrio/metabolismo , Feminino , Infertilidade Feminina , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Fosforilação , Progesterona/metabolismo , Receptores de Progesterona/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Útero/enzimologia , Útero/metabolismo
17.
Development ; 149(15)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35796552

RESUMO

How maternal Ezh1 and Ezh2 function in H3K27 methylation in vivo in pre-implantation embryos and during embryonic development is not clear. Here, we have deleted Ezh1 and Ezh2 alone or simultaneously from mouse oocytes. H3K27me3 was absent in oocytes without Ezh2 alone, while both H3K27me2 and H3K27me3 were absent in Ezh1/Ezh2 (Ezh1/2) double knockout (KO) oocytes. The effects of Ezh1/2 maternal KO were inherited in zygotes and early embryos, in which restoration of H3K27me3 and H3K27me2 was delayed by the loss of Ezh2 alone or of both Ezh1 and Ezh2. However, the ablation of both Ezh1 and Ezh2, but not Ezh1 or Ezh2 alone, led to significantly decreased litter size due to growth retardation post-implantation. Maternal Ezh1/2 deficiency caused compromised H3K27me3 and pluripotent epiblast cells in late blastocysts, followed by defective embryonic development. By using RNA-seq, we examined crucial developmental genes in maternal Ezh1/2 KO embryos and identified 80 putatively imprinted genes. Maternal Ezh1/2-H3K27 methylation is inherited in offspring embryos and has a critical effect on fetal and placental development. Thus, this work sheds light on maternal epigenetic modifications during embryonic development.


Assuntos
Histonas , Complexo Repressor Polycomb 2 , Animais , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Feminino , Camadas Germinativas/metabolismo , Camundongos , Oócitos/metabolismo , Placenta/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Gravidez
19.
Oncogene ; 41(24): 3316-3327, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35411035

RESUMO

GRB2-associated-binding protein 2 (Gab2) deletion has a preventive effect of on chronic liver inflammation and hepatocellular carcinoma. This study was aimed to elaborate Gab2-initiated immunoregulation during hepatocarcinogenesis. Compared to wild-type group, liver-specific overexpression of Gab2 mice (L-Gab2) displayed early hepatocarcinogenesis after 5-month diethylnitrosamine (DEN) induction, and accelerated tumor growth after 9-month DEN challenge. More myeloid-derived suppressor cells (MDSCs) were observed in DEN-challenged L-Gab2 mice than that in DEN-treated wild-type mice. Additionally, MDSCs activation-induced tumor angiogenesis capability and immunosuppression function were exceedingly activated in DEN-exposed L-Gab2 mice, which reflected in the increased platelet endothelial cell adhesion molecule (PECAM) and vascular endothelial growth factor (VEGF), and the decreased cytotoxic T lymphocytes. Mechanistically, DEN-challenged L-Gab2 mice produced more IL-6, and IL-6 depletion significantly deprived Gab2-overexpression-mediated tumor-promotion phenomena, accompanied by the impairment of MDSCs-initiated immunosuppression function. MDSCs isolated from IL-6-depleted L-Gab2 mice or inactivating MDSCs partly restored the immune function of cytotoxic T cells. Of note, MDSCs gene signatures had a significant association with the increased Gab2 or IL6 in hepatoma specimens. Collectively, L-Gab2 mice accelerated hepatoma progression possibly through activating IL-6-initiated the activation of MDSCs. This study provides a novel insights for exploring the role of Gab2 in autoimmune tolerance during hepatocarcinogenesis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Carcinoma Hepatocelular , Neoplasias Hepáticas , Células Supressoras Mieloides , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proteínas de Transporte/metabolismo , Humanos , Terapia de Imunossupressão , Interleucina-6/metabolismo , Neoplasias Hepáticas/metabolismo , Camundongos , Células Supressoras Mieloides/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
20.
Front Microbiol ; 13: 824224, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35479615

RESUMO

Gut microbes in insects may play an important role in the digestion, immunity and protection, detoxification of toxins, development, and reproduction. The rice leaffolder Cnaphalocrocis medinalis (Guenée) (Lepidoptera: Crambidae) is a notorious insect pest that can damage rice, maize, and other gramineous plants. To determine the effects of host plants and generations on the gut microbiota of C. medinalis, we deciphered the bacterial configuration of this insect pest fed rice or maize for three generations by Illumina MiSeq technology. A total of 16 bacterial phyla, 34 classes, 50 orders, 101 families, 158 genera, and 44 species were identified in C. medinalis fed rice or maize for three generations. Host plants, insect generation, and their interaction did not influence the alpha diversity indices of the gut microbiota of C. medinalis. The dominant bacterial taxa were Proteobacteria and Firmicutes at the phylum level and Enterococcus and unclassified Enterobacteriaceae at the genus level. A number of twenty genera coexisted in the guts of C. medinalis fed rice or maize for three generations, and their relative abundances occupied more than 90% of the gut microbiota of C. medinalis. A number of two genera were stably found in the gut of rice-feeding C. medinalis but unstably found in the gut microbiota of maize-feeding C. medinalis, and seven genera were stably found in the gut of maize-feeding C. medinalis but unstably found in the gut of rice-feeding C. medinalis. In addition, many kinds of microbes were found in some but not all samples of the gut of C. medinalis fed on a particular host plant. PerMANOVA indicated that the gut bacteria of C. medinalis could be significantly affected by the host plant and host plant × generation. We identified 47 taxa as the biomarkers for the gut microbiota of C. medinalis fed different host plants by LEfSe. Functional prediction suggested that the most dominant role of the gut microbiota in C. medinalis is metabolism, followed by environmental information processing, cellular processes, and genetic information processing. Our findings will enrich the understanding of gut bacteria in C. medinalis and reveal the differences in gut microbiota in C. medinalis fed on different host plants for three generations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA