Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(21): e202401973, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38520059

RESUMO

The inherently huge volume expansion during Li uptake has hindered the use of Si-based anodes in high-energy lithium-ion batteries. While some pore-forming and nano-architecting strategies show promises to effectively buffer the volume change, other parameters essential for practical electrode fabrication, such as compaction density, are often compromised. Here we propose a new in situ Mg doping strategy to form closed-nanopore structure into a micron-sized SiOx particle at a high bulk density. The doped Mg atoms promote the segregation of O, so that high-density magnesium silicates form to generate closed nanopores. By altering the mass content of Mg dopant, the average radii (ranged from 5.4 to 9.7 nm) and porosities (ranged from 1.4 % to 15.9 %) of the closed pores are precisely adjustable, which accounts for volume expansion of SiOx from 77.8 % to 22.2 % at the minimum. Benefited from the small volume variation, the Mg-doped micron-SiOx anode demonstrates improved Li storage performance towards realization of a 700-(dis)charge-cycle, 11-Ah-pouch-type cell at a capacity retention of >80 %. This work offers insights into reasonable design of the internal structure of micron-sized SiOx and other materials that undergo conversion or alloying reactions with drastic volume change, to enable high-energy batteries with stable electrochemistry.

2.
Nat Commun ; 14(1): 7247, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945604

RESUMO

Micron-sized Si anode promises a much higher theoretical capacity than the traditional graphite anode and more attractive application prospect compared to its nanoscale counterpart. However, its severe volume expansion during lithiation requires solid electrolyte interphase (SEI) with reinforced mechanical stability. Here, we propose a solvent-induced selective dissolution strategy to in situ regulate the mechanical properties of SEI. By introducing a high-donor-number solvent, gamma-butyrolactone, into conventional electrolytes, low-modulus components of the SEI, such as Li alkyl carbonates, can be selectively dissolved upon cycling, leaving a robust SEI mainly consisting of lithium fluoride and polycarbonates. With this strategy, raw micron-sized Si anode retains 87.5% capacity after 100 cycles at 0.5 C (1500 mA g-1, 25°C), which can be improved to >300 cycles with carbon-coated micron-sized Si anode. Furthermore, the Si||LiNi0.8Co0.1Mn0.1O2 battery using the raw micron-sized Si anode with the selectively dissolved SEI retains 83.7% capacity after 150 cycles at 0.5 C (90 mA g-1). The selective dissolution effect for tailoring the SEI, as well as the corresponding cycling life of the Si anodes, is positively related to the donor number of the solvents, which highlights designing high-donor-number electrolytes as a guideline to tailor the SEI for stabilizing volume-changing alloying-type anodes in high-energy rechargeable batteries.

3.
Angew Chem Int Ed Engl ; 62(33): e202305988, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37339945

RESUMO

Ether solvents with superior reductive stability promise excellent interphasial stability with high-capacity anodes while the limited oxidative resistance hinders their high-voltage operation. Extending the intrinsic electrochemical stability of ether-based electrolytes to construct stable-cycling high-energy-density lithium-ion batteries is challenging but rewarding. Herein, the anion-solvent interactions were concerned as the key point to optimize the anodic stability of the ether-based electrolytes and an optimized interphase was realized on both pure-SiOx anodes and LiNi0.8 Mn0.1 Co0.1 O2 cathodes. Specifically, the small-anion-size LiNO3 and tetrahydrofuran with high dipole moment to dielectric constant ratio realized strengthened anion-solvent interactions, which enhance the oxidative stability of the electrolyte. The designed ether-based electrolyte enabled a stable cycling performance over 500 cycles in pure-SiOx ||LiNi0.8 Mn0.1 Co0.1 O2 full cell, demonstrating its superior practical prospects. This work provides new insight into the design of new electrolytes for emerging high-energy density lithium-ion batteries through the regulation of interactions between species in electrolytes.

4.
Adv Mater ; 34(38): e2204835, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35916198

RESUMO

Layered Ni-rich lithium transition metal oxides are promising battery cathodes due to their high specific capacity, but their poor cycling stability due to intergranular cracks in secondary particles restricts their practical applications. Surface engineering is an effective strategy for improving a cathode's cycling stability, but most reported surface coatings cannot adapt to the dynamic volume changes of cathodes. Herein, a self-adaptive polymer (polyrotaxane-co-poly(acrylic acid)) interfacial layer is built on LiNi0.6 Co0.2 Mn0.2 O2 . The polymer layer with a slide-ring structure exhibits high toughness and can withstand the stress caused by particle volume changes, which can prevent the cracking of particles. In addition, the slide-ring polymer acts as a physicochemical barrier that suppresses surface side reactions and alleviates the dissolution of transition metallic ions, which ensures stable cycling performance. Thus, the as-prepared cathode shows significantly improved long-term cycling stability in situations in which cracks may easily occur, especially under high-rate, high-voltage, and high-temperature conditions.

5.
ACS Appl Mater Interfaces ; 14(24): 27854-27860, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35678306

RESUMO

The carbon-coated silicon monoxide (SiOx@C) has been considered as one of the most promising high-capacity anodes for the next-generation high-energy-density lithium-ion batteries (LIBs). However, the relatively low initial Coulombic efficiency (ICE) and the still existing huge volume expansion during repeated lithiation/delithiation cycling remain the greatest challenges to its practical application. Here, we developed a lithium and boron (Li/B) co-doping strategy to efficiently enhance the ICE and alleviate the volume expansion or pulverization of SiOx@C anodes. The in situ generated Li silicates (LixSiOy) by Li doping will reduce the active Li loss during the initial cycling and enhance the ICE of SiOx@C anodes. Meanwhile, B doping works to promote the Li+ diffusion and strengthen the internal bonding networks within SiOx@C, enhancing its resistance to cracking and pulverization during cycling. As a result, the enhanced ICE (83.28%), suppressed volume expansion, and greatly improved cycling (85.4% capacity retention after 200 cycles) and rate performance could be achieved for the Li/B co-doped SiOx@C (Li/B-SiOx@C) anodes. Especially, the Li/B-SiOx@C and graphite composite anodes with a capacity of 531.5 mA h g-1 were demonstrated to show an ICE of 90.1% and superior cycling stability (90.1% capacity retention after 250 cycles), which is significant for the practical application of high-energy-density LIBs.

6.
Adv Mater ; 34(15): e2200672, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35147252

RESUMO

In recent years, micrometer-sized Si-based anode materials have attracted intensive attention in the pursuit of energy-storage systems with high energy and low cost. However, the significant volume variation during repeated electrochemical (de)alloying processes will seriously damage the bulk structure of SiOx microparticles, resulting in rapid performance fade. This work proposes to address the challenge by preparing in situ magnesium-doped SiOx (SiMgy Ox ) microparticles with stable structural evolution against Li uptake/release. The homogeneous distribution of magnesium silicate in SiMgy Ox contributes to building a bonding network inside the particle so that it raises the modulus of lithiated state and restrains the internal cracks due to electrochemical agglomeration of nano-Si. The prepared micrometer-sized SiMgy Ox anode shows high reversible capacities, stable cycling performance, and low electrode expansion at high areal mass loading. A 21700 cylindrical-type cell based on the SiMgy Ox -graphite anode and LiNi0.8 Co0.15 Al0.05 O2 cathode demonstrates a 1000-cycle operation life using industry-recognized electrochemical test procedures, which meets the practical storage requirements for consumer electronics and electric vehicles. This work provides insights on the reasonable structural design of micrometer-sized alloying anode materials toward realization of high-performance Li-ion batteries.

7.
ACS Appl Mater Interfaces ; 13(21): 24916-24924, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34027654

RESUMO

Microsized SiOx has been vigorously investigated as an advanced anode material for next-generation lithium-ion batteries. However, its practical application is seriously hampered by its huge volume variation during the repeated (de)lithiation process, which destroys the microparticle structure and results in rapid capacity fading. Herein, we propose the usage of trans-difluoroethylene carbonate (DFEC) as an electrolyte additive to maintain the structural integrity of microsized SiOx with a uniform carbon layer (SiOx@C). Compared with ethylene carbonate and fluoroethylene carbonate, DFEC has lower lowest unoccupied molecular orbital energy and higher reduction potential, which is easily reduced and promotes the in situ formation of a more stable LiF-rich solid electrolyte interphase (SEI) on the surface of anode materials. The LiF-rich SEI exhibits enhanced mechanical rigidity and ionic conductivity, thus enabling the microsized SiOx@C anodes' excellent lithium storage stability and high average Coulombic efficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA