Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 19(10): 1921-1936, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34181810

RESUMO

The fight against infectious diseases often focuses on epidemics and pandemics, which demand urgent resources and command attention from the health authorities and media. However, the vast majority of deaths caused by infectious diseases occur in endemic zones, particularly in developing countries, placing a disproportionate burden on underfunded health systems and often requiring international interventions. The provision of vaccines and other biologics is hampered not only by the high cost and limited scalability of traditional manufacturing platforms based on microbial and animal cells, but also by challenges caused by distribution and storage, particularly in regions without a complete cold chain. In this review article, we consider the potential of molecular farming to address the challenges of endemic and re-emerging diseases, focusing on edible plants for the development of oral drugs. Key recent developments in this field include successful clinical trials based on orally delivered dried leaves of Artemisia annua against malarial parasite strains resistant to artemisinin combination therapy, the ability to produce clinical-grade protein drugs in leaves to treat infectious diseases and the long-term storage of protein drugs in dried leaves at ambient temperatures. Recent FDA approval of the first orally delivered protein drug encapsulated in plant cells to treat peanut allergy has opened the door for the development of affordable oral drugs that can be manufactured and distributed in remote areas without cold storage infrastructure and that eliminate the need for expensive purification steps and sterile delivery by injection.


Assuntos
Artemisia annua , Doenças Transmissíveis , Preparações Farmacêuticas , Animais , Humanos , Agricultura Molecular , Plantas Comestíveis
2.
Plant Biotechnol J ; 19(10): 1901-1920, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34182608

RESUMO

Infectious diseases, also known as transmissible or communicable diseases, are caused by pathogens or parasites that spread in communities by direct contact with infected individuals or contaminated materials, through droplets and aerosols, or via vectors such as insects. Such diseases cause ˜17% of all human deaths and their management and control places an immense burden on healthcare systems worldwide. Traditional approaches for the prevention and control of infectious diseases include vaccination programmes, hygiene measures and drugs that suppress the pathogen, treat the disease symptoms or attenuate aggressive reactions of the host immune system. The provision of vaccines and biologic drugs such as antibodies is hampered by the high cost and limited scalability of traditional manufacturing platforms based on microbial and animal cells, particularly in developing countries where infectious diseases are prevalent and poorly controlled. Molecular farming, which uses plants for protein expression, is a promising strategy to address the drawbacks of current manufacturing platforms. In this review article, we consider the potential of molecular farming to address healthcare demands for the most prevalent and important epidemic and pandemic diseases, focussing on recent outbreaks of high-mortality coronavirus infections and diseases that disproportionately affect the developing world.


Assuntos
COVID-19 , Doenças Transmissíveis , Doenças Transmissíveis/epidemiologia , Humanos , Pandemias/prevenção & controle , SARS-CoV-2
3.
PLoS One ; 11(10): e0164387, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27727304

RESUMO

Often plant tissues are recalcitrant and, due to that, methods relying on protein precipitation, such as TCA/acetone precipitation and phenol extraction, are usually the methods of choice for protein extraction in plant proteomic studies. However, the addition of precipitation steps to protein extraction methods may negatively impact protein recovery, due to problems associated with protein re-solubilization. Moreover, we show that when working with non-recalcitrant plant tissues, such as young maize leaves, protein extraction methods with precipitation steps compromise the maintenance of some labile post-translational modifications (PTMs), such as phosphorylation. Therefore, a critical issue when studying PTMs in plant proteins is to ensure that the protein extraction method is the most appropriate, both at qualitative and quantitative levels. In this work, we compared five methods for protein extraction of the C4-photosynthesis related proteins, in the tip of fully expanded third-leaves. These included: TCA/Acetone Precipitation; Phenol Extraction; TCA/Acetone Precipitation followed by Phenol Extraction; direct extraction in Lysis Buffer (a urea-based buffer); and direct extraction in Lysis Buffer followed by Cleanup with a commercial kit. Protein extraction in Lysis Buffer performed better in comparison to the other methods. It gave one of the highest protein yields, good coverage of the extracted proteome and phosphoproteome, high reproducibility, and little protein degradation. This was also the easiest and fastest method, warranting minimal sample handling. We also show that this method is adequate for the successful extraction of key enzymes of the C4-photosynthetic metabolism, such as PEPC, PPDK, PEPCK, and NADP-ME. This was confirmed by MALDI-TOF/TOF MS analysis of excised spots of 2DE analyses of the extracted protein pools. Staining for phosphorylated proteins in 2DE revealed the presence of several phosphorylated isoforms of PEPC, PPDK, and PEPCK.


Assuntos
Fosfopeptídeos/análise , Proteínas de Plantas/metabolismo , Proteoma/análise , Zea mays/metabolismo , Acetona/química , Eletroforese em Gel Bidimensional , Extração Líquido-Líquido , Fenóis/química , Fosfopeptídeos/isolamento & purificação , Fotossíntese , Folhas de Planta/metabolismo , Proteínas de Plantas/química , Análise de Componente Principal , Processamento de Proteína Pós-Traducional , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Ácido Tricloroacético/química , Ureia/química
4.
Arterioscler Thromb Vasc Biol ; 35(2): 399-408, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25538207

RESUMO

OBJECTIVE: Vascular and valvular calcifications are pathological processes regulated by resident cells, and depending on a complex interplay between calcification promoters and inhibitors, resembling skeletal metabolism. Here, we study the role of the vitamin K-dependent Gla-rich protein (GRP) in vascular and valvular calcification processes. APPROACH AND RESULTS: Immunohistochemistry and quantitative polymerase chain reaction showed that GRP expression and accumulation are upregulated with calcification simultaneously with osteocalcin and matrix Gla protein (MGP). Using conformation-specific antibodies, both γ-carboxylated GRP and undercarboxylated GRP species were found accumulated at the sites of mineral deposits, whereas undercarboxylated GRP was predominant in calcified aortic valve disease valvular interstitial cells. Mineral-bound GRP, MGP, and fetuin-A were identified by mass spectrometry. Using an ex vivo model of vascular calcification, γ-carboxylated GRP but not undercarboxylated GRP was shown to inhibit calcification and osteochondrogenic differentiation through α-smooth muscle actin upregulation and osteopontin downregulation. Immunoprecipitation assays showed that GRP is part of an MGP-fetuin-A complex at the sites of valvular calcification. Moreover, extracellular vesicles released from normal vascular smooth muscle cells are loaded with GRP, MGP, and fetuin-A, whereas under calcifying conditions, released extracellular vesicles show increased calcium loading and GRP and MGP depletion. CONCLUSIONS: GRP is an inhibitor of vascular and valvular calcification involved in calcium homeostasis. Its function might be associated with prevention of calcium-induced signaling pathways and direct mineral binding to inhibit crystal formation/maturation. Our data show that GRP is a new player in mineralization competence of extracellular vesicles possibly associated with the fetuin-A-MGP calcification inhibitory system. GRP activity was found to be dependent on its γ-carboxylation status, with potential clinical relevance.


Assuntos
Estenose da Valva Aórtica/prevenção & controle , Valva Aórtica/patologia , Calcinose/prevenção & controle , Cálcio/metabolismo , Doença da Artéria Coronariana/prevenção & controle , Proteínas/metabolismo , Calcificação Vascular/prevenção & controle , Actinas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Aorta/metabolismo , Aorta/patologia , Valva Aórtica/metabolismo , Estenose da Valva Aórtica/genética , Estenose da Valva Aórtica/metabolismo , Estenose da Valva Aórtica/patologia , Calcinose/genética , Calcinose/metabolismo , Calcinose/patologia , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Estudos de Casos e Controles , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/patologia , Vasos Coronários/metabolismo , Vasos Coronários/patologia , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Pessoa de Meia-Idade , Osteocalcina/genética , Osteocalcina/metabolismo , Proteínas/genética , Técnicas de Cultura de Tecidos , Calcificação Vascular/genética , Calcificação Vascular/metabolismo , Calcificação Vascular/patologia , alfa-2-Glicoproteína-HS/metabolismo , Proteína de Matriz Gla
5.
Biomed Res Int ; 2014: 340216, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24949434

RESUMO

Gla-rich protein (GRP) was described in sturgeon as a new vitamin-K-dependent protein (VKDP) with a high density of Gla residues and associated with ectopic calcifications in humans. Although VKDPs function has been related with γ-carboxylation, the Gla status of GRP in humans is still unknown. Here, we investigated the expression of recently identified GRP spliced transcripts, the γ-carboxylation status, and its association with ectopic calcifications, in skin basal cell and breast carcinomas. GRP-F1 was identified as the predominant splice variant expressed in healthy and cancer tissues. Patterns of γ-carboxylated GRP (cGRP)/undercarboxylated GRP (ucGRP) accumulation in healthy and cancer tissues were determined by immunohistochemistry, using newly developed conformation-specific antibodies. Both GRP protein forms were found colocalized in healthy tissues, while ucGRP was the predominant form associated with tumor cells. Both cGRP and ucGRP found at sites of microcalcifications were shown to have in vitro calcium mineral-binding capacity. The decreased levels of cGRP and predominance of ucGRP in tumor cells suggest that GRP may represent a new target for the anticancer potential of vitamin K. Also, the direct interaction of cGRP and ucGRP with BCP crystals provides a possible mechanism explaining GRP association with pathological mineralization.


Assuntos
Neoplasias da Mama/metabolismo , Calcinose , Carcinoma Basocelular/metabolismo , Neoplasias Cutâneas/metabolismo , Neoplasias da Mama/patologia , Carcinoma Basocelular/patologia , Feminino , Humanos , Naftoquinonas , Osteocalcina/metabolismo , Neoplasias Cutâneas/patologia , Vitamina K/metabolismo , alfa-Galactosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA