Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Environ Res ; : 120026, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39299449

RESUMO

In this paper, a novel numerical model capable of high-resolution, accurate simulation of the accumulation, wash-off, and migration of nonpoint source (NPS) pollutants on roads is proposed, effectively addressing the challenge of limited pipe network data for high-density urban building communities. This approach is based on a 1D-2D hydrodynamic and water quality dynamic bidirectional coupling model: GAST-SWMM. The calculation accuracy of the GAST two-dimensional road NPS wash-off model is validated via comparison with experimental data. The obtained Nash-Sutcliffe efficiency (NSE) is greater than 0.8. Moreover, the model was used to simulate the NPSs in a densely populated urban region of Xi'an, China, lacking building community pipeline data. The NPS pollutant transport and fate under the influence of both road runoff and the building community hydrodynamic water quality during rainfall events with a specific return period were examined. The proposed model can effectively and accurately replicate the accumulation and removal of NPS pollutants on a two-dimensional road and their dynamic interaction with the drainage network. With increasing rainfall return period, the peak time of the surface contaminant total load is postponed. The maximum surface pollutant load durations during rainfall events with 2-, 10-, and 50-year return periods are 60, 75, and 80 minutes, respectively. During the peak surface pollutant load time, the overflow pollutant fraction can exceed 85% for a 50-year rainfall return period. The simulation method presented in this paper accurately captures the spatial and temporal variations in NPS pollutants in densely populated urban areas, even when pipe network data for building communities are lacking. This method offers valuable technical assistance for urban environmental management and water quality protection.

2.
J Environ Manage ; 360: 121024, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38759551

RESUMO

Urban waterlogging is a significant global issue. To achieve precisely control urban waterlogging and enhance our understanding of its causes, a novel study method was introduced. This method is based on a dynamic bidirectional coupling model that combines 1D-2D hydrodynamic and water quality simulations. The waterlogging phenomenon in densely populated metropolitan areas of Changzhi city, China, was studied. This study focused on investigating the process involved in waterlogging formation, particularly overflow at nodes induced by the design of the topological structure of the pipe network, constraints on the capacity of the underground drainage system, and the surface runoff accumulation. The complex interplay among these elements and their possible influences on waterlogging formation were clarified. The results indicated notable spatial and temporal variation in the waterlogging formation process in densely populated urban areas. Node overflow in the drainage system emerged as the key influencing factor in the waterlogging formation process, accounting for up to 71% of the total water accumulation at the peak time. The peak lag time of waterlogging during events with short return periods was primarily determined by the rainfall peak moment. In contrast, the peak time of waterlogging during events with long return periods was influenced by the rainfall peak moment, drainage capacity and topological structure of the pipe network. Notably, the access of inflow from both upstream and downstream segments of the pipe network drainage system significantly impacted the peak time of waterlogging, with upstream water potentially delaying the peak time substantially. This study not only provides new insights into urban waterlogging mechanisms but also provides practical guidance for optimizing urban drainage systems, urban planning, and disaster risk management.


Assuntos
Modelos Teóricos , China , Movimentos da Água , Chuva , Cidades , Qualidade da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA