Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(19)2023 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-37833942

RESUMO

The formation of atherosclerotic plaques is one of the main sources of cardiovascular disease. In addition to known risk factors such as dyslipidemia, diabetes, obesity, and hypertension, endothelial dysfunction has been shown to play a key role in the formation and progression of atherosclerosis. Peroxisome proliferator-activated receptor-gamma (PPARγ), a transcription factor belonging to the steroid superfamily, is expressed in the aorta and plays a critical role in protecting endothelial function. It thereby serves as a target for treating both diabetes and atherosclerosis. Although many studies have examined endothelial cell disorders in atherosclerosis, the role of PPARγ in endothelial dysfunction is still not well understood. In this review, we summarize the possible mechanisms of action behind PPARγ regulatory compounds and post-translational modifications (PTMs) of PPARγ in the control of endothelial function. We also explore the potential use of endothelial PPARγ-targeted agents in the prevention and treatment of atherosclerosis.


Assuntos
Aterosclerose , PPAR gama , Humanos , Aterosclerose/genética , Aterosclerose/metabolismo , Diabetes Mellitus , PPAR gama/metabolismo , Processamento de Proteína Pós-Traducional , Fatores de Transcrição/metabolismo
2.
Biomolecules ; 12(12)2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36551260

RESUMO

The number of patients with type 2 diabetes mellitus (T2DM), which is mainly characterized by insulin resistance and insulin secretion deficiency, has been soaring in recent years. Accompanied by many other metabolic syndromes, such as cardiovascular diseases, T2DM represents a big challenge to public health and economic development. Peroxisome proliferator-activated receptor γ (PPARγ), a ligand-activated nuclear receptor that is critical in regulating glucose and lipid metabolism, has been developed as a powerful drug target for T2DM, such as thiazolidinediones (TZDs). Despite thiazolidinediones (TZDs), a class of PPARγ agonists, having been proven to be potent insulin sensitizers, their use is restricted in the treatment of diabetes for their adverse effects. Post-translational modifications (PTMs) have shed light on the selective activation of PPARγ, which shows great potential to circumvent TZDs' side effects while maintaining insulin sensitization. In this review, we will focus on the potential effects of PTMs of PPARγ on treating T2DM in terms of phosphorylation, acetylation, ubiquitination, SUMOylation, O-GlcNAcylation, and S-nitrosylation. A better understanding of PTMs of PPARγ will help to design a new generation of safer compounds targeting PPARγ to treat type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Hipoglicemiantes , PPAR gama , Processamento de Proteína Pós-Traducional , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , PPAR gama/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Tiazolidinedionas/efeitos adversos , Tiazolidinedionas/uso terapêutico , Resistência à Insulina , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Desenho de Fármacos , Terapia de Alvo Molecular
3.
Cell Mol Life Sci ; 79(5): 272, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35503385

RESUMO

Characterized by a surplus of whole-body adiposity, obesity is strongly associated with the prognosis of atherosclerosis, a hallmark of coronary artery disease (CAD) and the major contributor to cardiovascular disease (CVD) mortality. Adipose tissue serves a primary role as a lipid-storage organ, secreting cytokines known as adipokines that affect whole-body metabolism, inflammation, and endocrine functions. Emerging evidence suggests that adipokines can play important roles in atherosclerosis development, progression, as well as regression. Here, we review the versatile functions of various adipokines in atherosclerosis and divide these respective functions into three major groups: protective, deteriorative, and undefined. The protective adipokines represented here are adiponectin, fibroblast growth factor 21 (FGF-21), C1q tumor necrosis factor-related protein 9 (CTRP9), and progranulin, while the deteriorative adipokines listed include leptin, chemerin, resistin, Interleukin- 6 (IL-6), and more, with additional adipokines that have unclear roles denoted as undefined adipokines. Comprehensively categorizing adipokines in the context of atherosclerosis can help elucidate the various pathways involved and potentially pave novel therapeutic approaches to treat CVDs.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Adipocinas/metabolismo , Adiponectina/metabolismo , Adiposidade , Aterosclerose/metabolismo , Humanos , Interleucina-6/metabolismo , Leptina/metabolismo , Obesidade/metabolismo
4.
Nutrients ; 15(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36615677

RESUMO

Obesity is a growing global epidemic linked to many diseases, including diabetes, cardiovascular diseases, and musculoskeletal disorders. Exercise can improve bone density and decrease excess bone marrow adipose tissue (BMAT) in obese individuals. However, the mechanism of exercise regulating bone marrow microenvironment remains unclear. This study examines how exercise induces bone marrow remodeling in diet-induced obesity. We employed unbiased RNA-Seq to investigate the effect of exercise on the bone marrow of diet-induced obese male mice. Bone mesenchymal stem cells (BMSCs) were isolated to explore the regulatory effects of exercise in vitro. Our data demonstrated that exercise could slow down the progression of obesity and improve trabecular bone density. RNA-seq data revealed that exercise inhibited secreted phosphoprotein 1 (Spp1), which was shown to mediate bone resorption through mechanosensing mechanisms. Interactome analysis of Spp1 using the HINT database showed that Spp1 interacted with the adipokine adipsin. Moreover, exercise decreased BMAT, which induced osteoclast differentiation and promoted bone loss. Our study reveals that exercise improves the bone marrow microenvironment by at least partially inhibiting the adipsin-Spp1 signaling pathway so as to inhibit the alternative complement system from activating osteoclasts in diet-induced obese mice.


Assuntos
Medula Óssea , Fator D do Complemento , Masculino , Camundongos , Animais , Medula Óssea/metabolismo , Camundongos Obesos , Fator D do Complemento/metabolismo , Fator D do Complemento/farmacologia , Osteoclastos , Obesidade/etiologia , Obesidade/metabolismo , Dieta Hiperlipídica/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA