Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Int ; 124: 25-37, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30639905

RESUMO

Compared to drinking water, the higher bacterial abundance, diversity, and organic matter concentration in reclaimed wastewater suggest that it is more likely to form biofilms. Nevertheless, little is known regarding many important aspects of the biofilm ecology in reclaimed wastewater distribution systems (RWDS), such as the long-term microbial community succession and the underlying driving factors. In the present study, by sampling and analysing microbial compositions of pipe wall biofilms from six frequently used pipe materials under NaClOdisinfection (sodium hypochlorite-treated), NONdisinfection (without disinfection), and UVdisinfection (UV-treated) treatments over one year, it was found that the succession of microbial community structure followed a primary succession pattern. This primary succession pattern was reflected as increases in live cell number and α-diversity, along with metagenic succession in taxonomic composition. Proteobacteria, Nitrospirae, Bacteroidetes, Acidobacteria, Planctomycetes, Actinobacteria, and Verrucomicrobia comprised the dominant phyla in biofilm samples. Compared to biofilms in the NaClOdisinfection reactor, the bacterial communities of biofilms in NONdisinfection and UVdisinfection reactors were distributed more evenly among different bacterial phyla. Principal component analysis revealed a clear temporal pattern of microbial community structures in six kinds of pipe wall biofilms albeit a difference in microbial community structures among the three reactors. Adonis testing indicated that the microbial community composition variation caused by disinfection methods (R2 = 0.283, P < 0.01) was more pronounced than that from the time variable (R2 = 0.070, P < 0.01) and pipe material (R2 = 0.057, P < 0.01). Significantly positive correlation between average local abundance and occupancy was observed in biofilm communities of the three reactors, suggesting that the 'core-satellite' model could be applied to identify biofilm-preferential species under specific disinfection conditions in RWDS. The prevalence of family Sphingomonadaceae, known to show chlorine tolerance and powerful biofilm-forming ability in NaClOdisinfection reactors, evidenced the habitat filtering consequent to environment pressure. Correlation-based network analysis revealed that taxonomic relatedness such as similar niches, cooperation, taxa overdispersion, and competition all functioned toward driving the bacterial assembly succession in RWDS.


Assuntos
Bactérias/classificação , Fenômenos Fisiológicos Bacterianos , Biofilmes/crescimento & desenvolvimento , Águas Residuárias/microbiologia , Desinfecção , Água Potável/química , Microbiota
2.
Microbiome ; 6(1): 222, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30545419

RESUMO

BACKGROUND: Currently, the effect of the bacterial community on cast iron corrosion process does not reach consensus. Moreover, some studies have produced contrasting results, suggesting that bacteria can either accelerate or inhibit corrosion. RESULTS: The long-term effects of the bacterial community on cast iron corrosion in reclaimed wastewater distribution systems were investigated from both spatial (yellow layer vs. black layer) and temporal (1-year dynamic process) dimensions of the iron coupon-reclaimed wastewater microcosm using high-throughput sequencing and flow cytometry approaches. Cast iron coupons in the NONdisinfection and UVdisinfection reactors suffered more severe corrosion than did those in the NaClOdisinfection reactor. The bacterial community significantly promoted cast iron corrosion, which was quantified for the first time in the practical reclaimed wastewater and found to account for at least 30.5% ± 9.7% of the total weight loss. The partition of yellow and black layers of cast iron corrosion provided more accurate information on morphology and crystal structures for corrosion scales. The black layer was dense, and the particles looked fusiform, while the yellow layer was loose, and the particles were ellipse or spherical. Goethite was the predominant crystalline phase in black layers, while corrosion products mainly existed as an amorphous phase in yellow layers. The bacterial community compositions of black layers were distinctly separated from yellow layers regardless of disinfection methods. The NONdisinfection and UVdisinfection reactors had a more similar microbial composition and variation tendency for the same layer type than did the NaClOdisinfection reactor. Biofilm development can be divided into the initial start-up stage, mid-term development stage, and terminal stable stage. In total, 12 potential functional genera were selected to establish a cycle model for Fe, N, and S metabolism. Desulfovibrio was considered to accelerate the transfer of Fe0 to Fe2+ and speed up weight loss. CONCLUSION: The long-term effect of disinfection processes on corrosion behaviors of cast iron in reclaimed wastewater distribution systems and the hidden mechanisms were deciphered for the first time. This study established a cycle model for Fe, N, and S metabolism that involved 12 functional genera and discovered the significant contribution of Desulfovibrio in promoting corrosion.


Assuntos
Bactérias/crescimento & desenvolvimento , Reatores Biológicos/microbiologia , Ferro/química , Águas Residuárias/química , Bactérias/classificação , Bactérias/isolamento & purificação , Biofilmes , Corrosão , DNA Bacteriano/genética , Desulfovibrio/classificação , Desulfovibrio/crescimento & desenvolvimento , Desulfovibrio/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Compostos de Ferro/análise , Minerais/análise , Análise de Sequência de DNA , Análise Espaço-Temporal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA