Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Dent Sci ; 19(4): 2090-2099, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39347028

RESUMO

Background/purpose: Dental pulp stem cells (DPSCs) have demonstrated significant potential for neuroregeneration. However, a full understanding of the specific mechanism underpinning the neural differentiation of DPSCs is still required. The Wnt signaling is crucial for the development of the embryonic neural system and the maintenance of adult neural homeostasis. This study aimed to investigate the role of the Wnt/Ca2+ pathway in the neural differentiation of human DPSCs (hDPSCs) and its modulation of the Wnt/ß-catenin pathway. Materials and methods: hDPSCs were cultured and divided into the control group and the neurogenic induction group (Neuro group). The mRNA and protein levels of neurogenic markers, Wnt/Ca2+, and Wnt/ß-catenin pathway indicators were determined using Quantitative real-time PCR and Western blotting. After inhibition of the Wnt/Ca2+ pathway using a WNT5A short hairpin RNA (shRNA) plasmid and subsequent neurogenic induction, neurogenic markers and Wnt/ß-catenin pathway indicators in the NC-sh-Neuro group and WNT5A-sh-Neuro group were determined using Quantitative real-time PCR and Western blotting. Results: Compared with the control group, the expression of the Wnt/Ca2+ pathway indicators (WNT5A, Frizzled 2, calmodulin-dependent protein kinase IIa, and nuclear factor of active T cells 1) decreased in the Neuro group. Conversely, the expression of WNT3A, total ß-catenin and active ß-catenin in the Wnt/ß-catenin pathway increased. Moreover, compared with the NC-sh-Neuro group, the WNT5A-sh-Neuro group exhibited a greater level of mature neural differentiation alongside elevated expression of the Wnt/ß-catenin pathway indicators. Conclusion: The Wnt/Ca2+ pathway inhibited neural differentiation of hDPSCs and has a negative effect on the Wnt/ß-catenin pathway in vitro.

2.
Med Sci Monit ; 28: e934511, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35301274

RESUMO

BACKGROUND The aims of the study were to comprehensively compare the morphology, immunophenotype, proliferation, migration, and regeneration potential of normal dental pulp stem cells (DPSCs) versus inflammatory dental pulp stem cells (iDPSCs). MATERIAL AND METHODS Healthy pulp or inflamed pulp tissue was used to isolate and culture DPSCs and iDPSCs, respectively. These cell populations were characterized by flow cytometry, colony formation assay, transwell assay, and multi-directional differentiation in vitro. RESULTS No difference was observed in the morphology, cell-surface markers, or cell migration between DPSCs and iDPSCs. DPSCs showed a higher colony-forming capacity, proliferative viability, and osteo/dentinogenesis ability compared with iDPSCs. However, iDPSCs demonstrated enhanced neurogenesis, angiogenesis, adipogenesis, and chondrogenesis capacities in comparison to DPSCs. CONCLUSIONS Our data revealed the differences of biological properties between DPSCs and iDPSCs. The highly angiogenic and neurogenic potential of iDPSCs indicate their possible use in the regeneration of the dentin-pulp complex and support the critical role of angiogenesis and neurogenesis in pulp regeneration.


Assuntos
Polpa Dentária/fisiologia , Osteogênese/fisiologia , Células-Tronco/citologia , Adulto , Diferenciação Celular , Movimento Celular , Proliferação de Células , Células Cultivadas , Feminino , Citometria de Fluxo , Seguimentos , Humanos , Imunofenotipagem , Masculino , Estudos Retrospectivos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA