Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Transl Cancer Res ; 11(5): 1285-1296, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35706821

RESUMO

Background: MicroRNAs (miRNAs) acting as tumour suppressors or oncogenes, known as oncomiRs, are a promising new focus in targeted therapies for cancer. Approximately 16% of breast cancer patients have pre-existing diabetes. Breast cancer with type 2 diabetes mellitus (BDM) is provided with its unique biological characteristics and clinical characteristics. This study primarily investigated the therapeutic potential and regulatory mechanism of miR-29a in patients with BDM. Methods: The significance of miR-29a in BDM was analyzed by real-time reverse transcriptase polymerase chain reaction (qRT-PCR) in breast tissues. A cell model for BDM was established by using MDA-MB-231 cells cultured in 3T3-L1 adipocytes cultured with high levels of glucose and insulin. A type 2 diabetes mellitus (T2DM) mouse model was induced in female BALB/c mice through a high-fat diet plus low doses of streptozotocin (STZ). The xenograft mouse-model for BDM was established on these T2DM mouse by using MDA-MB-231 cells. Then the biological effects of miR-29a knockdown mediated by lentivirus-shRNAs on cell proliferation, apoptosis, cell cycle, and migration were investigated. Results: Our results indicated that miR-29a was upregulated in patients with BDM, which correlated with a worse prognosis. In human breast cancer cells, miR-29a knockdown reduced cell proliferation and cell migration and invasion in BDM. In the T2DM xenograft, miR-29a knockdown suppressed MDA-MB-231 cells tumorigenesis and metastasis. We also demonstrated that miR-29a promoted BDM cell growth and metastasis by targeting Sirtuin 1 (SIRT1). Conclusions: Our findings indicated that anti-miR-29a inhibited cell proliferation and invasion in BDM by targeting SIRT1. We believe anti-miR-29a may represent a novel therapeutic approach for the management of patients with BDM.

2.
Ann Med ; 54(1): 1188-1201, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35481406

RESUMO

BACKGROUND: Associating liver partition and portal vein ligation (ALPPS) technique is a promising strategy for unresectable primary liver tumours without sufficient future liver remnants (FLRs). OBJECTIVE: Our study explored the effect of corosolic acid (CA) on inhibiting tumour growth without compromising ALPPS-induced liver regeneration. METHODS: The ALPPS procedure was performed in Sprague-Dawley rats with orthotopic liver cancer. Blood, tumour, and FLR samples were collected, and the effect of CA on the inhibition of tumour progression and ALPPS-induced liver regeneration, and its possible mechanism, were investigated. RESULTS: The tumour weight in the implantation/ALPPS group was higher than in the implantation without ALPPS group (p < .05), and the tumour weight in the implantation/ALPPS/CA group was lower than in the implantation/ALPPS group (p < .05). On postoperative day 15, the hepatic regeneration rate, and the expression of Ki67+ hepatocytes in the FLRs had increased significantly in the group that underwent ALPPS. The number of cluster of differentiation (CD) 86+ macrophages markedly increased in the FLRs and in the tumours of groups that underwent the ALPPS procedure. Additionally, the number of CD206+ macrophages was higher than the number of CD86+ macrophages in the tumours of the implantation and the implantation/ALPPS groups (p < .01, respectively); however, the opposite results were observed in the CA groups. The administration of CA downregulated the expression of transforming growth factor-beta (TGF-ß), CD31, and programmed cell death protein 1 (PD-1) but increased the number of CD8+ lymphocytes in tumours. CONCLUSION: Corosolic acid inhibits tumour growth without compromising ALPPS-induced liver regeneration. This result may be attributed to the CA-induced downregulation of PD-1 and TGF-ß expression and the increased CD8+ lymphocyte infiltration in tumour tissue associated with the suppression of M2 macrophage polarisation. Key MessagesThis study aimed to investigate the effect of CA on ALPPS-induced liver regeneration and hepatic tumour progression after ALPPS-induced liver regeneration.Corosolic acid inhibits tumour growth without compromising ALPPS-induced liver regeneration. This result may be attributed to the CA-induced downregulation of PD-1 and TGF-ß expression and the increased CD8+ lymphocyte infiltration in tumour tissue associated with the suppression of M2 macrophage polarisation.


Assuntos
Neoplasias Hepáticas , Regeneração Hepática , Animais , Hepatectomia/métodos , Neoplasias Hepáticas/cirurgia , Regeneração Hepática/fisiologia , Veia Porta/cirurgia , Receptor de Morte Celular Programada 1 , Ratos , Ratos Sprague-Dawley , Fator de Crescimento Transformador beta , Triterpenos
3.
Int J Biol Macromol ; 198: 1-10, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34963621

RESUMO

Staphylococcus aureus (S. aureus) infection is difficult to fight, previous experimental reports have demonstrated thioridazine (TZ) and tetracycline (TC) is an inhibitor of S. aureus efflux pump NorA and autolysin Atl, respectively, here, by means of molecular docking and molecular dynamics simulation, we observed that thioridazine (TZ) and tetracycline (TC) blocked the binding of substrates to NorA and Atl, respectively, and reduced their activities, and our antibacterial susceptibility test and three-dimensional checkerboard method showed that the three-drug combination of antibiotic cloxacillin (CXN), TZ and TC had a synergistic anti-Staphylococcal activity in vitro, and α-Hemolysin tests and scanning electron microscopy showed that the three-drug combination and the subinhibitory concentration of the combination significantly inhibited the secretion of α-hemolysin relative to the number of membrane-derived vesicles produced by S. aureus. Whereas Western blot and pharmacological inhibition assays showed that the three-drug combination significantly inhibited the expression of MAPK/NF-κB/NLRP3 proteins in macrophages induced with S. aureus α-hemolysin. In vivo, the drug combination significantly reduced bacterial colony-forming unit counts in the viscera of a mouse peritonitis model of S. aureus infection, therapy reduced the primary inflammatory pathology and the bacteria-stimulated release of cytokines such as IL-1ß and TNF-α, and inhibited the expression of MAPK/NF-κB/NLRP3 proteins in peritoneal macrophages. Thus, the combination of efflux pump inhibitor, autolysis inhibitor and antibiotic, is a novel anti-Staphylococcal and anti-inflammatory strategy who owning good antibacterial activity and significant inhibiting staphylococcal α-hemolysin and inflammation.


Assuntos
Staphylococcus aureus
4.
Mol Cell Probes ; 52: 101583, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32360740

RESUMO

Previous studies have demonstrated that insulin-like growth factor-I (IGF-1) and reactive oxygen species (ROS) are involved in the development and progression of various cancers. However, their regulatory mechanism remains unknown. In this study, we treated cancer cells (HeLa, HepG2 and SW1116 cells) and normal cells (NCM-460) with IGF-1 at different concentrations and for different times and found that cancer cells produced large amounts of cytoplasmic ROS in cancer cells but not in normal cells. Further mechanistic analysis demonstrated that IGF-1 activated NFκB and NLRP3 inflammatory signalling in HeLa cells; systematic analysis indicated that IGF-1 activates NFκB and NLRP3, and the activation was cytosolic ROS- and NADPH oxidase 2 (NOX2)-dependent. Additionally, through coimmunoprecipitation experiments, we found that the IRS-1/COX2/mPGES-1/MAPKs/RAC2/NOX2 pathway nexus was involved in IGF-1-induced NFκB and NLRP3 production. Finally, we validated the regulatory mechanisms through IRS-1, mPGES-1 or NOX2 inhibition using their respective selective inhibitors or shRNA knockdown. Taken together, this is the first report on the mechanism by which IGF-1 activates NFκB and NLRP3 inflammatory signalling via ROS. These findings pave the way for an in-depth study of the role of IGF-1 and ROS in inflammation associated with the development and progression of cancer.


Assuntos
Inflamação/patologia , Fator de Crescimento Insulin-Like I/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral , Ciclo-Oxigenase 2/metabolismo , Humanos , Proteínas Substratos do Receptor de Insulina/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Prostaglandina-E Sintases/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Proteína RAC2 de Ligação ao GTP
5.
Vet Comp Oncol ; 18(4): 689-698, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32270590

RESUMO

The levels of insulin-like growth factor-l (IGF-1) and reactive oxygen species (ROS) are abnormally elevated in various tumour tissues, and IGF-1 has been reported to be associated with the development and progression of inflammation in cancers. In this study, we found that IGF-1 activated nuclear factor-κB (NF-κB) and NLRP3 inflammatory signalling via IRS-1/mPGES-1/NOX2-regulated ROS. Additionally, in the B16-F10 tumour-bearing mouse model, the number of tumours, tumour growth, invasion of tissues and expression of proinflammatory factors in peripheral blood were significantly decreased by treatment with an inhibitor combination compared with those of the IGF-1 group. Taken together, targeting IRS-1/mPGES-1/NOX2 to inhibit inflammation related to NF-κB and NLRP3 is a potential strategy for controlling the development and progression of cancer.


Assuntos
Fator de Crescimento Insulin-Like I/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neoplasias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Linhagem Celular , Progressão da Doença , Humanos , Camundongos
6.
Pol J Microbiol ; 68(4): 477-491, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31880892

RESUMO

This study explored a potential treatment against methicillin-resistant Staphylococcus aureus (MRSA) infections that combines thioridazine (TZ), an efflux pump inhibitor, and miconazole (MCZ), an autolysis inducer, with the anti-microbial drug cloxacillin (CXN). In vitro, the combination treatment of TZ and MCZ significantly reduced 4096-fold (Σ (FIC) = 0.1 - 1.25) the MIC value of CXN against S. aureus. In vivo, the combination therapy significantly relieved breast redness and swelling in mice infected with either clinical or standard strains of S. aureus. Meanwhile, the number of bacteria isolated from the MRSA135-infected mice decreased significantly (p = 0.0427 < 0.05) after the combination therapy when compared to monotherapy. Moreover, the number of bacteria isolated from the mice infected with a reference S. aureus strain also decreased significantly (p = 0.0191 < 0.05) after the combination therapy when compared to monotherapy. The pathological changes were more significant in the CXN-treated group when compared to mice treated with a combination of three drugs. In addition, we found that combination therapy reduced the release of the bacteria-stimulated cytokines such as IL-6, IFN-γ, and TNF-α. Cytokine assays in serum revealed that CXN alone induced IL-6, IFN-γ, and TNF-α in the mouse groups infected with ATCC 29213 or MRSA135, and the combination of these three drugs significantly reduced IL-6, IFN-γ, and TNF-α concentrations. Also, the levels of TNF-α and IFN-γ in mice treated with a combination of three drugs were significantly lower than in the CXN-treated group. Given the synergistic antibacterial activity of CXN, we concluded that the combination of CXN with TZ, and MCZ could be developed as a novel therapeutic strategy against S. aureus.This study explored a potential treatment against methicillin-resistant Staphylococcus aureus (MRSA) infections that combines thioridazine (TZ), an efflux pump inhibitor, and miconazole (MCZ), an autolysis inducer, with the anti-microbial drug cloxacillin (CXN). In vitro, the combination treatment of TZ and MCZ significantly reduced 4096-fold (Σ (FIC) = 0.1 ­ 1.25) the MIC value of CXN against S. aureus. In vivo, the combination therapy significantly relieved breast redness and swelling in mice infected with either clinical or standard strains of S. aureus. Meanwhile, the number of bacteria isolated from the MRSA135-infected mice decreased significantly (p = 0.0427 < 0.05) after the combination therapy when compared to monotherapy. Moreover, the number of bacteria isolated from the mice infected with a reference S. aureus strain also decreased significantly (p = 0.0191 < 0.05) after the combination therapy when compared to monotherapy. The pathological changes were more significant in the CXN-treated group when compared to mice treated with a combination of three drugs. In addition, we found that combination therapy reduced the release of the bacteria-stimulated cytokines such as IL-6, IFN-γ, and TNF-α. Cytokine assays in serum revealed that CXN alone induced IL-6, IFN-γ, and TNF-α in the mouse groups infected with ATCC 29213 or MRSA135, and the combination of these three drugs significantly reduced IL-6, IFN-γ, and TNF-α concentrations. Also, the levels of TNF-α and IFN-γ in mice treated with a combination of three drugs were significantly lower than in the CXN-treated group. Given the synergistic antibacterial activity of CXN, we concluded that the combination of CXN with TZ, and MCZ could be developed as a novel therapeutic strategy against S. aureus.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Farmacorresistência Bacteriana , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos , beta-Lactamas/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteriólise/efeitos dos fármacos , Cloxacilina/farmacologia , Quimioterapia Combinada , Humanos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Miconazol/farmacologia , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/citologia , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Tioridazina/farmacologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-31380296

RESUMO

α-Hemolysin (Hla) is a significant virulence factor in Staphylococcus aureus (S. aureus)-caused infectious diseases such as pneumonia. Thus, to prevent the production of Hla when treating S. aureus infection, it is necessary to choose an antibiotic with good antibacterial activity and effect. In our study, we observed that Fosfomycin (FOM) at a sub-inhibitory concentration inhibited expression of Hla. Molecular dynamics demonstrated that FOM bound to the binding sites LYS 154 and ASP 108 of Hla, potentially inhibiting Hla. Furthermore, we verified that staphylococcal membrane-derived vesicles (SMVs) contain Hla and that FOM treatment significantly reduced the production of SMVs and Hla. Based on our pharmacological inhibition analysis, ERK and p38 activated NLRP3 inflammasomes. Moreover, FOM inhibited expression of MAPKs and NLRP3 inflammasome-related proteins in S. aureus as well as SMV-infected human macrophages (MΦ) and alveolar epithelial cells. In vivo, SMVs isolated from S. aureus DU1090 (an isogenic Hla deletion mutant) or the strain itself caused weaker inflammation than that of its parent strain 8325-4. FOM also significantly reduced the phosphorylation levels of ERK and P38 and expression of NLRP3 inflammasome-related proteins. In addition, FOM decreased MPO activity, pulmonary vascular permeability and edema formation in the lungs of mice with S. aureus-caused pneumonia. Taken together, these data indicate that FOM exerts protective effects against S. aureus infection in vitro and in vivo by inhibiting Hla in SMVs and blocking ERK/P38-mediated NLRP3 inflammasome activation by Hla.


Assuntos
Antibacterianos/farmacologia , Toxinas Bacterianas/antagonistas & inibidores , Fosfomicina/farmacologia , Proteínas Hemolisinas/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Pneumonia Estafilocócica/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Fatores de Virulência/antagonistas & inibidores , Animais , Antibacterianos/química , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Sítios de Ligação , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Vesículas Extracelulares , Fosfomicina/química , Regulação da Expressão Gênica , Proteínas Hemolisinas/química , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Interações Hospedeiro-Patógeno/genética , Humanos , Inflamassomos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Pneumonia Estafilocócica/microbiologia , Pneumonia Estafilocócica/patologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Staphylococcus aureus/genética , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/patogenicidade , Células THP-1 , Fatores de Virulência/química , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
FASEB J ; 33(11): 12515-12527, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31461386

RESUMO

Diabetes mellitus (DM) affects bone metabolism and leads to osteoporosis; however, its pathogenetic mechanisms remain unknown. We found that high glucose (HG) conditions induced the production of reactive oxygen species (ROS) and the expression of proteins related to MAPKs [phosphorylated (p)-ERK, p-JNK, and p-p38], NF-κB (NF-κB, p-IκB, and IKK), and NACHT-LRR-PYD domains-containing protein 3 (NALP3) (NLRP3) [apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC), caspase-1, IL-18, IL-1ß, and NLRP3] in osteoclasts (OCs) in vitro. Further analysis showed that in HG-induced OCs, ROS is an upstream signal for MAPKs, NF-κB, and the NLRP3 inflammasome. Moreover, MAPKs mediated the activation of NF-κB and NLRP3, whereas NF-κB up-regulated the NLRP3 inflammasome response. Interestingly, HG inducement enhanced the bone resorption of OCs but inhibited their efferocytosis, whereas insulin and lipoxin A4 (4) treatment reversed this phenomenon. In streptozotocin-induced diabetic rats in vivo, the numbers and the bone-resorption capacity of OCs as well as the serum levels of TRACP-5b were significantly increased, and the expression of MAPK-, NF-κB-, and NLRP3 inflammasome-related proteins in the proximal tibia were also significantly elevated; however, treatment with insulin and LXA4 reversed this elevation. Together, these results demonstrated that the activation of ROS/MAPKs/NF-κB/NLRP3 and the inhibition of efferocytosis in OCs are the main causes of osteoporosis in DM.-An, Y., Zhang, H., Wang, C., Jiao, F., Xu, H., Wang, X., Luan, W., Ma, F., Ni, L., Tang, X., Liu, M., Guo, W., Yu, L. Activation of ROS/MAPKs/NF-κB/NLRP3 and inhibition of efferocytosis in osteoclast-mediated diabetic osteoporosis.


Assuntos
Complicações do Diabetes/metabolismo , Diabetes Mellitus Experimental/metabolismo , Sistema de Sinalização das MAP Quinases , Osteoclastos/metabolismo , Osteoporose/metabolismo , Animais , Complicações do Diabetes/genética , Complicações do Diabetes/patologia , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Masculino , NF-kappa B/genética , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Osteoclastos/patologia , Osteoporose/genética , Osteoporose/patologia , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
9.
J Pharm Pharmacol ; 71(9): 1429-1439, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31259423

RESUMO

OBJECTIVE: To explore the effect of cordycepin on reducing lipid droplets in adipocytes. METHODS: Rats were fed a 60% high-fat diet to construct a hyperlipidaemia animal model and then treated with cordycepin at different concentrations for 8 weeks. Adipocytes were extracted, and BODIPY staining was used to detect the size of the lipid droplets. The adipocyte membrane proteins ASC-1, PAT2 and P2RX5 were assessed to determine the transformation of white adipocytes to beige and brown adipocytes. In an in vitro study, 3T3-L1 cells were cultured, and Western blotting was used to determine the expression of the lipid droplet-related genes Fsp27, perilipin 3, perilipin 2, PPAR-γ, Rab5, Rab7, Rab11, perilipin 1, ATGL and CGI-58. RESULTS: We found that cordycepin could promote the transformation of white adipocytes into beige and brown adipocytes. Cordycepin also downregulated the lipid droplet-associated genes Fsp27, perilipin 3, perilipin 2, Rab5, Rab11 and perilipin 1. Moreover, cordycepin reduced the expression of protein CGI-58, which inhibits lipid droplet degradation. In addition, cordycepin significantly increased the expression of ATGL, suggesting that cordycepin might stimulate lipolysis by upregulating the expression of ATGL instead of CGI-58 and by downregulating the expression of perilipin 1. CONCLUSIONS: Cordycepin could blockade lipid droplet formation and promote lipid droplet degradation.


Assuntos
Adipócitos Bege/efeitos dos fármacos , Adipócitos Bege/metabolismo , Desoxiadenosinas/farmacologia , Gotículas Lipídicas/metabolismo , Lipólise/efeitos dos fármacos , Células 3T3-L1 , Animais , Peso Corporal/efeitos dos fármacos , Gotículas Lipídicas/efeitos dos fármacos , Lipídeos/sangue , Masculino , Camundongos , Perilipina-1/metabolismo , Perilipina-2/metabolismo , Perilipina-3/metabolismo , Proteínas , Ratos Sprague-Dawley , Proteínas rab5 de Ligação ao GTP
10.
Front Cell Neurosci ; 13: 199, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31133815

RESUMO

Previous studies have demonstrated that T cells and microglia could fight against cerebral Listeria monocytogenes (Listeria); however, their synergistic anti-Listeria mechanisms remain unknown. Following Listeria infection in a culture system, we found that microglia, but not nerve cells, could release extracellular traps (ETs) which originated from microglial vesicles. Specific inhibitor analysis showed that extracellular DNA (eDNA), matrix metallopeptidases (MMP9 and MMP12), citrullinated histone H3, and peptidyl arginine deiminase 2 were the major components of microglial ETs (MiETs) and were also the components of vesicles. Systematic analysis indicated that Listeria-induced MiETs were cytosolic reactive oxygen species (ROS)- and NADPH oxidase (NOX)-dependent and involved ERK. MiETs were exhibited in Listeria-infected mouse brain and might protected against Listeria infection via bacterial killing in a mouse meningitis model, and MiETs existed in cerebrospinal fluid (CSF) from Listeria meningitis patients in vivo and in vitro. Additionally, interferon-γ could induce MiET formation in Listeria-infected microglia in vitro that was mediated by NOX, and there was a positive relationship between the elevated level of IFN-γ and eDNA and nucleosomes in the brain homogenates and CSF of Listeria meningitis model mice and in the CSF before treatment in clinical Listeria meningitis patients. Together, this is the first report of MiET formation, these findings pave the way for deeper exploration of the innate immune response to pathogens in CNS.

11.
Electrophoresis ; 40(20): 2736-2746, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31141184

RESUMO

Tuberculosis is highly persistent and displays phenotypic resistance to high concentrations of antimicrobials. Recent reports exhibited that Mycobacterium tuberculosis biofilm was implicated to its pathogenicity and drug resistance. In this study, there were 47 kinds of differential proteins in the biofilm of M. tuberculosis H37Rv cells compared with the planktonic bacteria, and 37 proteins were nonredundant and identified by proteomics approach, such as 2DE and LC-MS/MS. Moreover, six kinds of proteins were identified as HspX, which were conservative and highly expressed in biofilm. Note that 47 differential proteins were divided into seven categories, such as cell wall and cell processes, conserved hypotheticals, intermediary metabolism and respiration, and so on by TUBERCULIST. The Gene Ontology classification results showed that the largest protein group involved in metabolism, binding proteins, and catalytic function accounts for 30% and 57% of all identified proteins, respectively. Moreover, the protein interaction network analyzed by STRING showed that the minority proteins such as RpoA, SucC, Cbs, Tuf, DnaK, and GroeL in the interaction network have high network connectivity. These results implied that the proteins involved in metabolic process and catalytic function and the minority proteins mentioned above may play an important role in M. tuberculosis biofilm formation. To our knowledge, this is the first report about differential proteins between biofilm and planktonic M. tuberculosis, which provided the potential antigens for vaccines and target proteins for anti-mycobacterial drugs.


Assuntos
Proteínas de Bactérias/análise , Biofilmes , Mycobacterium tuberculosis , Proteoma/análise , Proteômica/métodos , Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/citologia , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/fisiologia , Mapas de Interação de Proteínas/fisiologia , Proteoma/metabolismo
12.
Int J Med Microbiol ; 309(1): 73-83, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30563740

RESUMO

Tuberculosis is a highly infectious disease and of high incidence in low-income countries that is caused by Mycobacterium tuberculosis (M. tuberculosis). M. tuberculosis can form biofilms in vitro and in vivo, and the cells in the biofilm can survive at high concentrations of antibiotics. CwlM is a peptidoglycan hydrolase (amidase) and can hydrolyze bacterial cell walls, and the effects of CwlM on autolysis and biofilms is worthy of in-depth study. In this study, we successfully constructed an in vitro biofilm model of M. tuberculosis and Mycobacterium smegmatis (M. smegmatis). Reverse transcription followed by real-time quantitative PCR (qPCR) revealed that the expression of cwlM in M. tuberculosis and M. smegmatis was significantly up-regulated during the middle stage of biofilm formation. Treatment with recombinant CwlM enhanced the autolytic ability of M. tuberculosis and M. smegmatis and reduced the formation of their biofilms. As M. smegmatis is a model bacterium of M. tuberculosis, we built the M. smegmatis cwlM-deletion strain MSΔ6935, whose autolytic ability, biofilm production, and eDNA and eRNA content were determined to be lower than those of its parental strain. In conclusion, the cwlM gene plays a key regulatory role in biofilm formation in M. tuberculosis and M. smegmatis. This study provided a theoretical basis for using peptidoglycan hydrolase as a target for the inhibition of biofilms.


Assuntos
Bacteriólise/genética , Biofilmes/crescimento & desenvolvimento , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/genética , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Parede Celular/metabolismo , Humanos , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium smegmatis/enzimologia , Mycobacterium tuberculosis/enzimologia , N-Acetil-Muramil-L-Alanina Amidase/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Deleção de Sequência , Tuberculose/microbiologia
13.
Lipids Health Dis ; 17(1): 276, 2018 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-30522511

RESUMO

BACKGROUND: An increasing number of studies have shown that obesity is the key etiological agent of cardiovascular diseases, nonalcoholic fatty liver disease, type 2 diabetes and several kinds of cancer and that gut microbiota change was one of the reasons suffering from obesity. At present, the gut microbiota has gained increased attention as a potential energy metabolism organ. Our recent study reported that cordycepin, a major bioactive component separated from Cordyceps militaris, prevented body weight gain in mice fed a high-fat diet directly acting to adipocytes, however, the effect of cordycepin regulating gut microbiota keeps unknown. METHODS: In this research, we synthesized cordycepin (3-deoxyadenosine) by chemical methods and verified that cordycepin reduces body weight gain and fat accumulation around the epididymis and the kidneys of rats fed a high-fat diet. Furthermore, we used high-throughput sequencing on a MiSeq Illumina platform to test the species of intestinal bacteria in high-fat-diet-induced obese rats. RESULTS: We found that cordycepin modifies the relative abundance of intestinal bacteria in high-fat-diet-induced obese rats. However, cordycepin did not alter the variety of bacteria in the intestine. Cordycepin treatment dramatically reversed the relative abundance of two dominant bacterial phyla (Bacteroidetes and Firmicutes) in the high-fat-diet-induced obese rats, resulting in abundance similar to that of the chow diet group. CONCLUSION: Our study suggests that cordycepin can reduce body weight and microbiome done by cordycepin seems be a result among its mechanisms of obesity reduction.


Assuntos
Cordyceps/química , Desoxiadenosinas/administração & dosagem , Obesidade/tratamento farmacológico , Redução de Peso/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Desoxiadenosinas/síntese química , Desoxiadenosinas/química , Dieta Hiperlipídica/efeitos adversos , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Camundongos , Obesidade/etiologia , Obesidade/microbiologia , Obesidade/fisiopatologia , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Ratos , Redução de Peso/fisiologia
14.
Curr Pharm Des ; 24(27): 3240-3249, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30124145

RESUMO

BACKGROUND: Cordycepin is an extract from the insect fungus Cordyceps. militaris with various biological function. In previous studies, cordycepin has demonstrated an excellent anti-obesity effect, but the mechanism is unclear. It was also demonstrated that prolactin played an important role in body weight regulation and hyperprolactinemia can promote appetite and accelerate fat deposition. In this study, we explored the molecular mechanism of the anti-obesity effect of cordycepin. METHODS: In Vivo, the obese rat model was induced by high fat diet for five weeks, and the serum and liver lipid levels coupled with the serum prolactin levels were reduced following cordycepin treatment (P<0.01). RESULTS: The results suggested that cordycepin is a potential drug that lowers blood and liver lipid levels and reduces body weight related to prolactin. Cordycepin also protects adipocytes from enlargement and hepatocytes from lipotoxicity-induced inflammation. In vitro, cordycepin inhibited prolactin secretion in GH3 cells via upregulating the expression of adenosine A1 receptor, and the inhibition effect was blocked by an antagonist of adenosine receptor A1 DPDPX, demonstrating that cordycepin may work as an adenosine agonist. Additionally, cordycepin inhibited the ERK/AKT/PI3K pathway in GH3 cells. At the same time, cordycepin blocked prolactininduced upregulation of lipogenesis genes PRLR, and phosphorylation of JAK2 in 3T3-L1 cells. In an in vivo study, cordycepin downregulated the expression of prolactin receptor (PRLR) but not the phosphorylation of JAK2. CONCLUSION: Thus, it was proved that cordycepin modulates body weight by reducing prolactin release via an adenosine A1 receptor.


Assuntos
Cordyceps/metabolismo , Prolactina/metabolismo , Receptor A1 de Adenosina/metabolismo , Células 3T3-L1 , Animais , Peso Corporal , Linhagem Celular , Modelos Animais de Doenças , Camundongos , Obesidade/metabolismo , Ratos , Ratos Sprague-Dawley
15.
Artigo em Inglês | MEDLINE | ID: mdl-29515975

RESUMO

Triclosan (TCS) is a broad-spectrum antimicrobial agent, whose well-known antibacterial mechanism is inhibiting lipid synthesis. Autophagy, an innate immune response, is an intracellular process that delivers the cargo including pathogens to lysosomes for degradation. In this study, we first demonstrated that TCS induced autophagy in a dose-dependent manner in non-phagocytic cells (HeLa) and in macrophages (Raw264.7) and in vivo. The western blot results also revealed that TCS induced autophagy via the AMPK/ULK1 and JNK/ERK/p38 pathways independent of mTOR. The immunofluorescence results indicated that TCS up-regulated the expression of the ubiquitin receptors NDP52 and p62 and strengthened the co-localization of these receptors with Salmonella enterica Typhimurium (S. typhimurium) or Candida albicans (C. albicans) in infected MΦ cells. In addition, sub-lethal concentrations of TCS enhanced the clearing of the pathogens S. typhimurium or C. albicans in infected MΦ and in corresponding mouse infection models in vivo. Specifically, we found that a sub-inhibitory concentration of TCS induced autophagy, leading to an imbalance of the intestinal microflora in mice through the analysis of 16s rRNA Sequencing. Together, these results demonstrated that TCS induced autophagy, which enhanced the killing against pathogenic S. typhimurium or C. albicans within mammal cells but broke the balance of the intestinal microflora.


Assuntos
Candida albicans/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Salmonella/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Triclosan/farmacologia , Animais , Autofagossomos , Autofagia , Células HeLa , Humanos , Sistema de Sinalização das MAP Quinases , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Testes de Sensibilidade Microbiana , Proteínas Nucleares/metabolismo , Células RAW 264.7 , RNA Ribossômico 16S , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Transdução de Sinais , Fator de Transcrição RelA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA