Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Zhejiang Univ Sci B ; 25(5): 389-409, 2024 May 15.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38725339

RESUMO

The short neuropeptide F (sNPF) family of peptides is a multifunctional group of neurohormones involved in the regulation of various physiological processes in insects. They have been found in a broad spectrum of species, but the number of isoforms in the precursor molecule varies from one to four. The receptor for sNPF (sNPFR), which belongs to the G protein-coupled receptor family, has been characterized in various insect orders and was shown to be an ortholog of the mammalian prolactin-releasing peptide receptor (PrPR). The sNPF signaling pathway interacts with other neurohormones such as insulin-like peptides, SIFamide, and pigment-dispersing factors (PDFs) to regulate various processes. The main physiological function of sNPF seems to be involved in the regulation of feeding, but the observed effects are species-specific. sNPF is also connected with the regulation of foraging behavior and the olfactory system. The influence of sNPF on feeding and thus energy metabolism may also indirectly affect other vital processes, such as reproduction and development. In addition, these neurohormones are involved in the regulation of locomotor activity and circadian rhythm in insects. This review summarizes the current state of knowledge about the sNPF system in insects.


Assuntos
Insetos , Neuropeptídeos , Transdução de Sinais , Animais , Neuropeptídeos/metabolismo , Neuropeptídeos/fisiologia , Insetos/fisiologia , Insetos/metabolismo , Ritmo Circadiano/fisiologia , Comportamento Alimentar , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/fisiologia , Metabolismo Energético
2.
J Exp Biol ; 226(17)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37589559

RESUMO

The cockroach Gromphadorhina coquereliana can survive at low temperatures under extensive periods of cold stress. To assess energy management and insect adaptation in response to cold, we measured mitochondrial activity and oxidative stress in muscle and fat body tissues from G. coquereliana under a fluctuating thermal regime (FTR; stressed at 4°C for 3 h on 3 consecutive days, with or without 24 h recovery). Compared with our earlier work showing that a single exposure to cold significantly affects mitochondrial parameters, here, repeated exposure to cold triggered an acclimatory response, resulting in unchanged mitochondrial bioenergetics. Immediately after cold exposure, we observed an increase in the overall pool of ATP and a decrease in typical antioxidant enzyme activity. We also observed decreased activity of uncoupling protein 4 in muscle mitochondria. After 24 h of recovery, we observed an increase in expression of antioxidant enzymes in muscles and the fat body and a significant increase in the expression of UCP4 and HSP70 in the latter. This indicates that processes related to energy conversion and disturbance under cold stress may trigger different protective mechanisms in these tissues, and that these mechanisms must be activated to restore insect homeostasis. The mitochondrial parameters and enzymatic assays suggest that mitochondria are not affected during FTR but oxidative stress markers are decreased, and a 24 h recovery period allows for the restoration of redox and energy homeostasis, especially in the fat body. This confirms the crucial role of the fat body in intermediary metabolism and energy management in insects and in the response to repeated thermal stress.


Assuntos
Baratas , Animais , Antioxidantes , Estresse Oxidativo , Mitocôndrias , Homeostase
4.
Sci Rep ; 12(1): 20697, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36450889

RESUMO

Insects are the largest group of arthropod phyla and are capable of surviving in a variety of environments. One of the most important factors in enabling them to do so is their resistance to temperature stress, i.e., cold tolerance. The neuroendocrine system, together with the immune system, cooperates to regulate a number of physiological processes that are essential for the stability of the organism in stressful conditions. However, to date, no one has studied the effect of insect myoinhibitory peptides (MIPs) on cold stress tolerance and immune system activity. Here, we investigated the effect of Tenmo-MIP 5 (10-6 M), cold stress (- 5 °C) and a combination of both on the immune response of Tenebrio molitor. All three treatments caused upregulation of immune-related genes (antimicrobial peptides and Toll) and increased phagocytosis activity (by approximately 10%). However, phenoloxidase activity and mortality were increased only after peptide injection and the combination of both treatments. The peptide injection combined with cold stress caused 40% higher mortality than that in the control. Together, our results show the links between cold stress, MIPs activity and the immune response, and to our knowledge, this is the first report showing the effect of MIP on the insect immune system.


Assuntos
Tolerância Imunológica , Neuropeptídeos , Animais , Insetos , Imunidade
5.
Front Zool ; 19(1): 1, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34991650

RESUMO

Temperature stress is one of the crucial factors determining geographical distribution of insect species. Most of them are active in moderate temperatures, however some are capable of surviving in extremely high as well as low temperatures, including freezing. The tolerance of cold stress is a result of various adaptation strategies, among others the mitochondria are an important player. They supply cells with the most prominent energy carrier-ATP, needed for their life processes, but also take part in many other processes like growth, aging, protection against stress injuries or cell death. Under cold stress, the mitochondria activity changes in various manner, partially to minimize the damages caused by the cold stress, partially because of the decline in mitochondrial homeostasis by chill injuries. In the response to low temperature, modifications in mitochondrial gene expression, mtDNA amount or phosphorylation efficiency can be observed. So far study also showed an increase or decrease in mitochondria number, their shape and mitochondrial membrane permeability. Some of the changes are a trigger for apoptosis induced via mitochondrial pathway, that protects the whole organism against chill injuries occurring on the cellular level. In many cases, the observed modifications are not unequivocal and depend strongly on many factors including cold acclimation, duration and severity of cold stress or environmental conditions. In the presented article, we summarize the current knowledge about insect response to cold stress focusing on the role of mitochondria in that process considering differences in results obtained in different experimental conditions, as well as depending on insect species. These differentiated observations clearly indicate that it is still much to explore.

6.
J Comp Physiol B ; 190(5): 521-534, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32749520

RESUMO

Neuropeptides of short neuropeptides F family (sNPF) have been identified in various arthropods. They are pleiotropic neuromolecules which so far have been mainly associated with regulation of feeding and metabolism, as well as growth and development, locomotion, circadian rhythm or learning and memory. Here, we describe the effects of Tenebrionid sNPF peptide (SGRSPSLRLRFa) on various aspects of the male reproductive physiology in the Tenebrio molitor beetle. We identified in silico the putative sNPF receptor Tenmo-sNPFR. Based on RT-PCR technique, it was shown that the receptor might be present in the male reproductive tissues of this beetle. The analysis of receptor amino acid sequence showed that it is similar to other beetle sNPFRs, as well as other insect species, and belongs rhodopsin-like G-protein-coupled receptors (GPCRs). Injections of Trica-sNPF and its shorter form Trica-sNPF(4-11) caused differentiated effects in T. molitor male reproductive tissues. After 24 h post injections, the peptides decreased the concentration of the soluble protein fraction in testes of 4- and 8-day-old beetles as well as the dry mass of these organs but only in 8-day-old individuals. The same effects were shown with regard to accessory glands. Both peptides decrease the concentration of the soluble protein fraction but do not affect the dry mass of this organ. Furthermore, injections of Trica-sNPF at the 10-7 M concentration decrease the total sperm number in the reproductive system. Surprisingly, the same concentration of the shorter form, Trica-sNPF(4-11) increased the sperm number. It was also shown that both peptides in different manner influence contractions of ejaculatory duct. The data presented in this article give new evidence that sNPFs are involved in the regulation of reproductive events in beetles, which might be the part of a larger neuropeptide network combining feeding, growth and development with the physiology of reproduction.


Assuntos
Genitália Masculina/fisiologia , Proteínas de Insetos/fisiologia , Neuropeptídeos/fisiologia , Tenebrio/fisiologia , Sequência de Aminoácidos , Animais , Feminino , Fertilidade , Genitália Masculina/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Masculino , Neuropeptídeos/metabolismo , Conformação Proteica , Transdução de Sinais , Contagem de Espermatozoides , Tenebrio/química , Tenebrio/genética , Tenebrio/metabolismo , Transcriptoma
7.
Sci Rep ; 10(1): 12076, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32694601

RESUMO

Low temperatures in nature occur together with desiccation conditions, causing changes in metabolic pathways and cellular dehydration, affecting hemolymph volume, water content and ion homeostasis. Although some research has been conducted on the effect of low temperature on Gromphadorhina coquereliana, showing that it can survive exposures to cold or even freezing, no one has studied the effect of cold on the hemolymph volume and the immune response of this cockroach. Here, we investigated the effect of low temperature (4 °C) on the abovementioned parameters, hemocyte morphology and total number. Cold stress affected hemocytes and the immune response, but not hemolymph volume. After stress, the number of circulating hemocytes decreased by 44.7%, but the ratio of apoptotic cells did not differ significantly between stressed and control individuals: 8.06% and 7.18%, respectively. The number of phagocyting hemocytes decreased by 16.66%, the hemocyte morphology drastically changed, and the F-actin cytoskeleton differed substantially in cold-stressed insects compared to control insects. Moreover, the surface area of the cells increased from 393.69 µm2 in the control to 458.38 µm2 in cold-treated animals. Together, our results show the links between cold stress and the cellular immune response, which probably results in the survival capability of this species.


Assuntos
Baratas/fisiologia , Temperatura Baixa , Resposta ao Choque Frio , Hemolinfa/metabolismo , Animais , Apoptose , Biomarcadores , Adesão Celular , Contagem de Células , Hemócitos/citologia , Hemócitos/metabolismo , Fagocitose
8.
Int J Mol Sci ; 21(10)2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32429155

RESUMO

Allatostatins (ASTs) are pleiotropic insect neuropeptides that are potent myoinhibitors of muscle contractions. In this study, we identified and immunolocalized peptides from the MIP/AST and PISCF/AST families in the nervous system of a model beetle, Tenebrio molitor. Neurons containing MIPs were immunolocalized in the brains of adults and the ventral nerve cords of larvae, pupae and imagines of this species as well as in the retrocerebral complex. PISCFs were immunolocalized in the ventral nerve cord of all stages as well as the brain of the adult beetle. Faint signals were also observed in the corpus allatum but not in the corpus cardiacum. The results allowed us to deduce the sequences of three neuropeptides belonging to MIP/ASTs, Tenmo-MIP4-NWGQFGXWa, Tenmo-MIP5-SKWDNFRGSWa and Tenmo-MIP6-EPAWSNLKGIWa, and one peptide from the PISCF/AST family, QSRYXQCYFNPISCX. Furthermore, we showed for the first time myostimulatory action of endogenous MIP/ASTs. Tenmo-MIP5 caused dose-dependent stimulation of the contractile activity of the beetle oviduct muscles, showing a sigmoidal curve up to 81.20% at the 10-8 M concentration, and the EC50 value for the myostimulatory effect of this peptide was 8.50 × 10-12 M. This is the first report of myostimulatory action of an endogenous myoinhibitory peptide in insect muscles.


Assuntos
Sistema Nervoso Central/metabolismo , Músculos/fisiologia , Neuropeptídeos/farmacologia , Tenebrio/metabolismo , Animais , Feminino , Contração Muscular/efeitos dos fármacos , Músculos/efeitos dos fármacos , Oviductos/efeitos dos fármacos , Oviductos/fisiologia , Peptídeos/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
9.
Front Physiol ; 11: 376, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32390871

RESUMO

Insects are the largest group of animals. They are capable of surviving in virtually all environments from arid deserts to the freezing permafrost of polar regions. This success is due to their great capacity to tolerate a range of environmental stresses, such as low temperature. Cold/freezing stress affects many physiological processes in insects, causing changes in main metabolic pathways, cellular dehydration, loss of neuromuscular function, and imbalance in water and ion homeostasis. The neuroendocrine system and its related signaling mediators, such as neuropeptides and biogenic amines, play central roles in the regulation of the various physiological and behavioral processes of insects and hence can also potentially impact thermal tolerance. In response to cold stress, various chemical signals are released either via direct intercellular contact or systemically. These are signals which regulate osmoregulation - capability peptides (CAPA), inotocin (ITC)-like peptides, ion transport peptide (ITP), diuretic hormones and calcitonin (CAL), substances related to the general response to various stress factors - tachykinin-related peptides (TRPs) or peptides responsible for the mobilization of body reserves. All these processes are potentially important in cold tolerance mechanisms. This review summarizes the current knowledge on the involvement of the neuroendocrine system in the cold stress response and the possible contributions of various signaling molecules in this process.

10.
Metabolites ; 10(5)2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32413967

RESUMO

Red blood cells (RBCs) are the most abundant cells in the human blood that have been extensively studied under morphology, ultrastructure, biochemical and molecular functions. Therefore, RBCs are excellent cell models in the study of biologically active compounds like drugs and toxins on the structure and function of the cell membrane. The aim of the present study was to explore erythrocyte ghost's proteome to identify changes occurring under the influence of three bee venom peptides-melittin, tertiapin, and apamin. We conducted preliminary experiments on the erythrocyte ghosts incubated with these peptides at their non-hemolytic concentrations. Such preparations were analyzed using liquid chromatography coupled with tandem mass spectrometry. It was found that when higher concentrations of melittin and apamin were used, fewer proteins were identified. Moreover, the results clearly indicated that apamin demonstrates the greatest influence on the RBCs ghosts proteome. Interestingly, the data also suggest that tertiapin exerted a stabilizing effect on the erythrocyte membrane. The experiments carried out show the great potential of proteomic research in the projects focused on the toxin's properties as membrane active agents. However, to determine the specificity of the effect of selected bee venom peptides on the erythrocyte ghosts, further proteomic research should be focused on the quantitative analysis.

11.
J Exp Biol ; 222(Pt 23)2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31672731

RESUMO

Cold tolerance is considered an important factor determining the geographic distribution of insects. We have previously shown that despite its tropical origin, the cockroach Gromphadorinha coquereliana is capable of surviving exposures to cold. However, the freezing tolerance of this species had not yet been examined. Low temperature is known to alter membrane integrity in insects, but whether chilling or freezing compromises DNA integrity remains a matter of speculation. In the present study, we subjected the G. coquereliana adults to freezing to determine their supercooling point (SCP) and evaluated whether the cockroaches were capable of surviving partial and complete freezing. Next, we conducted single cell gel electrophoresis (SCGE) assays to determine whether heat, cold and freezing altered hemocyte DNA integrity. The SCP of this species was high and around -4.76°C, which is within the typical range of freezing-tolerant species. Most cockroaches survived to 1 day after partial ice formation (20% mortality), but died progressively in the next few days after cold stress (70% mortality after 4 days). One day after complete freezing, most insects died (70% mortality), and after 4 days, 90% of them had succumbed. The SCGE assays showed substantial levels of DNA damage in hemocytes. When cockroaches were heat-stressed, the level of DNA damage was similar to that observed in the freezing treatment, though all heat-stressed insects survived. The present study shows that G. coquereliana can be considered as moderately freeze-tolerant, and that extreme low temperature stress can affect DNA integrity, suggesting that this cockroach may possess an efficient DNA repair system.


Assuntos
Aclimatação/genética , Baratas/fisiologia , Temperatura Baixa/efeitos adversos , Dano ao DNA , Animais , Baratas/genética , Congelamento , Masculino
12.
Toxins (Basel) ; 11(9)2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31461888

RESUMO

Melittin (MEL) is a basic polypeptide originally purified from honeybee venom. MEL exhibits a broad spectrum of biological activity. However, almost all studies on MEL activity have been carried out on vertebrate models or cell lines. Recently, due to cheap breeding and the possibility of extrapolating the results of the research to vertebrates, insects have been used for various bioassays and comparative physiological studies. For these reasons, it is valuable to examine the influence of melittin on insect physiology. Here, for the first time, we report the immunotropic and cardiotropic effects of melittin on the beetle Tenebrio molitor as a model insect. After melittin injection at 10-7 M and 10-3 M, the number of apoptotic cells in the haemolymph increased in a dose-dependent manner. The pro-apoptotic action of MEL was likely compensated by increasing the total number of haemocytes. However, the injection of MEL did not cause any changes in the percent of phagocytic haemocytes or in the phenoloxidase activity. In an in vitro bioassay with a semi-isolated Tenebrio heart, MEL induced a slight chronotropic-positive effect only at a higher concentration (10-4 M). Preliminary results indicated that melittin exerts pleiotropic effects on the functioning of the immune system and the endogenous contractile activity of the heart. Some of the induced responses in T. molitor resemble the reactions observed in vertebrate models. Therefore, the T. molitor beetle may be a convenient invertebrate model organism for comparative physiological studies and for the identification of new properties and mechanisms of action of melittin and related compounds.


Assuntos
Venenos de Abelha/química , Coração/efeitos dos fármacos , Sistema Imunitário/efeitos dos fármacos , Meliteno/farmacologia , Contração Miocárdica/efeitos dos fármacos , Tenebrio/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Relação Dose-Resposta a Droga , Coração/fisiologia , Hemócitos/efeitos dos fármacos , Masculino , Meliteno/isolamento & purificação , Modelos Animais , Fagocitose/efeitos dos fármacos , Fagocitose/imunologia , Tenebrio/imunologia , Tenebrio/fisiologia
13.
Front Physiol ; 10: 319, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30984018

RESUMO

Model organisms are often used in biological, medical and environmental research. Among insects, Drosophila melanogaster, Galleria mellonella, Apis mellifera, Bombyx mori, Periplaneta americana, and Locusta migratoria are often used. However, new model organisms still appear. In recent years, an increasing number of insect species has been suggested as model organisms in life sciences research due to their worldwide distribution and environmental significance, the possibility of extrapolating research studies to vertebrates and the relatively low cost of rearing. Beetles are the largest insect order, with their representative - Tribolium castaneum - being the first species with a completely sequenced genome, and seem to be emerging as new potential candidates for model organisms in various studies. Apart from T. castaneum, additional species representing various Coleoptera families, such as Nicrophorus vespilloides, Leptinotarsa decemlineata, Coccinella septempunctata, Poecilus cupreus, Tenebrio molitor and many others, have been used. They are increasingly often included in two major research aspects: biomedical and environmental studies. Biomedical studies focus mainly on unraveling mechanisms of basic life processes, such as feeding, neurotransmission or activity of the immune system, as well as on elucidating the mechanism of different diseases (neurodegenerative, cardiovascular, metabolic, or immunological) using beetles as models. Furthermore, pharmacological bioassays for testing novel biologically active substances in beetles have also been developed. It should be emphasized that beetles are a source of compounds with potential antimicrobial and anticancer activity. Environmental-based studies focus mainly on the development and testing of new potential pesticides of both chemical and natural origin. Additionally, beetles are used as food or for their valuable supplements. Different beetle families are also used as bioindicators. Another important research area using beetles as models is behavioral ecology studies, for instance, parental care. In this paper, we review the current knowledge regarding beetles as model organisms and their practical application in various fields of life science.

14.
Insect Sci ; 26(4): 656-670, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29333681

RESUMO

Burying beetles (Nicrophorus sp.) are necrophagous insects with developed parental care. Genome of Nicrophorus vespilloides has been recently sequenced, which makes them interesting model organism in behavioral ecology. However, we know very little about their physiology, including the functioning of their neuroendocrine system. In this study, one of the physiological activities of proctolin, myosuppressin (Nicve-MS), myoinhibitory peptide (Trica-MIP-5) and the short neuropeptide F (Nicve-sNPF) in N. vespilloides have been investigated. The tested neuropeptides were myoactive on N. vespilloides hindgut. After application of the proctolin increased hindgut contraction frequency was observed (EC50 value was 5.47 × 10-8 mol/L). The other tested neuropeptides led to inhibition of N. vespilloides hindgut contractions (Nicve-MS: IC50 = 5.20 × 10-5 mol/L; Trica-MIP-5: IC50 = 5.95 × 10-6 mol/L; Nicve-sNPF: IC50 = 4.08 × 10-5 mol/L). Moreover, the tested neuropeptides were immunolocalized in the nervous system of N. vespilloides. Neurons containing sNPF and MIP in brain and ventral nerve cord (VNC) were identified. Proctolin-immunolabeled neurons only in VNC were observed. Moreover, MIP-immunolabeled varicosities and fibers in retrocerebral complex were observed. In addition, our results have been supplemented with alignments of amino acid sequences of these neuropeptides in beetle species. This alignment analysis clearly showed amino acid sequence similarities between neuropeptides. Moreover, this allowed to deduce amino acid sequence of N. vespilloides proctolin (RYLPTa), Nicve-MS (QDVDHVFLRFa) and six isoforms of Nicve-MIP (Nicve-MIP-1-DWNRNLHSWa; Nicve-MIP-2-AWQNLQGGWa; Nicve-MIP-3-AWQNLQGGWa; Nicve-MIP-4-AWKNLNNAGWa; Nicve-MIP-5-SEWGNFRGSWa; Nicve-MIP-6- DPAWTNLKGIWa; and Nicve-sNPF-SGRSPSLRLRFa).


Assuntos
Besouros/metabolismo , Proteínas de Insetos/metabolismo , Neuropeptídeos/metabolismo , Sistemas Neurossecretores/metabolismo , Sequência de Aminoácidos , Animais , Imunofluorescência , Motilidade Gastrointestinal , Contração Muscular , Oligopeptídeos/metabolismo
15.
Neuropeptides ; 70: 26-36, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29776677

RESUMO

Neuropeptides control the functioning of the nervous system of insects, and they are the most diverse signalling molecules in terms of structure and function. Allatostatins are pleiotropic neuropeptides that are considered potent myoinhibitors of muscle contractions in insects. We investigated the effects caused by three distinct allatostatins, Dippu-AST1 (LYDFGL-NH2 from Diploptera punctata), Grybi-MIP1 (GWQDLNGGW-NH2 from Gryllus bimaculatus) and Trica-ASTC (pESRYRQCYFNPISCF-OH from Tribolium castaneum) on contractile activity of the myocardium, oviduct and hindgut of two tenebrionid beetles, Tenebrio molitor and Zophobas atratus. Studies showed that all three peptides exerted myostimulatory effects on the oviduct and hindgut of the beetles, however they did not cause any effect on myocardium. The effects of Dippu-AST1, Grybi-MIP1 and Trica-ASTC were dose-dependent and tissue and species specific. The highest stimulatory effect was caused by Trica-ASTC, showing stimulation of approximately 82% at a 10-12 M concentration and 76% at a 10-11 M concentration for T. molitor and Z. atratus, respectively. The oviduct of T. molitor was more susceptible to allatostatins than that of Z. atratus. Dippu-AST1 showed the maximum stimulating effect at 10-11 M (57%), whereas Grybi-MIP 1 at 10-10 M caused a 41% stimulation. Trica-ASTC, in both species, showed a myostimulatory effect over the whole range of tested concentrations but was most potent at a 10-12 M concentration and caused a 54% and 31.9% increase in the frequency of contractions in the oviduct of T. molitor and Z. atratus, respectively. The results suggest that allatostatins may affect the regulation of egg movement within the oviducts and movement of food in the digestive tract of beetles and do not regulate directly the activity of heart, thus being good candidate compounds in neuropeptides based pest control agents in future research.


Assuntos
Coração/fisiologia , Contração Muscular/fisiologia , Neuropeptídeos/farmacologia , Sequência de Aminoácidos , Animais , Besouros , Trato Gastrointestinal/efeitos dos fármacos , Neuropeptídeos/metabolismo , Óvulo/metabolismo
16.
Curr Med Chem ; 24(29): 3116-3152, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28552052

RESUMO

BACKGROUND: Insects are the largest and the most widely distributed group of animals in the world. Their diversity is a source of incredible variety of different mechanisms of life processes regulation. There are many agents that regulate immunology, reproduction, growth and development or metabolism. Hence, it seems that insects may be a source of numerous substances useful in human diseases treatment. Especially important in the regulation of insect physiology are peptides, like neuropeptides, peptide hormones or antimicrobial peptides. There are two main aspects where they can be helpful, 1) Peptides isolated from insects may become potential drugs in therapy of different diseases, 2) A lot of insect peptide hormones show structural or functional homology to mammalian peptide hormones and the comparative studies may give a new look on human disorders. In our review we focused on three group of insect derived peptides: 1) immune-active peptides, 2) peptide hormones and 3) peptides present in venoms. CONCLUSION: In our review we try to show the considerable potential of insect peptides in searching for new solutions for mammalian diseases treatment. We summarise the knowledge about properties of insect peptides against different virulent agents, anti-inflammatory or anti-nociceptive properties as well as compare insect and mammalian/vertebrate peptide endocrine system to indicate usefulness of knowledge about insect peptide hormones in drug design. The field of possible using of insect delivered peptide to therapy of various human diseases is still not sufficiently explored. Undoubtedly, more attention should be paid to insects due to searching new drugs.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Venenos de Artrópodes/farmacologia , Proteínas de Insetos/farmacologia , Neuropeptídeos/farmacologia , Hormônios Peptídicos/farmacologia , Animais , Anti-Infecciosos/farmacologia , Anti-Inflamatórios/farmacologia , Peptídeos Catiônicos Antimicrobianos/imunologia , Antineoplásicos/farmacologia , Venenos de Artrópodes/imunologia , Descoberta de Drogas , Humanos , Proteínas de Insetos/imunologia , Insetos/imunologia , Neuropeptídeos/imunologia , Hormônios Peptídicos/imunologia
17.
PLoS One ; 12(3): e0173100, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28253309

RESUMO

Protective mechanisms against cold stress are well studied in terrestrial and polar insects; however, little is known about these mechanisms in tropical insects. In our study, we tested if a tropical cockroach Gromphadorhina coquereliana, possesses any protective mechanisms against cold stress. Based on the results of earlier studies, we examined how short-term (3 h) cold (4°C) influences biochemical parameters, mitochondrial respiration activity, and the level of HSPs and aquaporins expression in the fat body and leg muscles of G. coquereliana. Following cold exposure, we found that the level of carbohydrates, lipids and proteins did not change significantly. Nevertheless, we observed significant changes in mitochondrial respiration activity. The oxygen consumption of resting (state 4) and phosphorylating (state 3) mitochondria was altered following cold exposure. The increase in respiratory rate in state 4 respiration was observed in both tissues. In state 3, oxygen consumption by mitochondria in fat body was significantly lower compared to control insects, whereas there were no changes observed for mitochondria in muscle tissue. Moreover, there were cold-induced changes in UCP protein activity, but the changes in activity differed in fat body and in muscles. Additionally, we detected changes in the level of HSP70 and aquaporins expression. Insects treated with cold had significantly higher levels of HSP70 in fat body and muscles. On the other hand, there were lower levels of aquaporins in both tissues following exposure to cold. These results suggest that fat body play an important role in protecting tropical insects from cold stress.


Assuntos
Baratas/fisiologia , Temperatura Baixa , Corpo Adiposo/fisiologia , Músculos/fisiologia , Estresse Fisiológico , Animais , Fosforilação
18.
Protein Pept Lett ; 23(10): 913-931, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27468814

RESUMO

Neuropeptides and peptide hormones from non-neuronal tissues play important roles in the regulation of insect life. In recent years, the rapid development of analytical techniques has contributed to the discovery of more than 30 families of peptide neurohormones that differ structurally and functionally. Although the discovery of the first neuropeptide occurred almost forty years ago, our knowledge about their full mode of activities, primary structures, synthesis, interactions with receptors or places of action increases gradually and there is still much to unravel. However, one thing is certain. Neuropeptides perform an extremely diverse range of activities. One neuropeptide can affect physiology in different ways. The neuropeptides can act as neurotransmitters, co-transmitters as well as neuromodulators. Most of these molecules have diverse pleiotropic activities on different tissues and organs. Their mode of action includes allatotropic, myotropic, cardiotropic or gonadotropic effects. Activity of some of them is conserved among most of insect species, indicating crucial roles in insect physiology and age of these systems. On the other hand, activity of other neuropeptides and peptide hormones is highly diverse, depending on species or even stages of development. This may indicate that some compounds have taken over the function of others. Insect heart work is regulated in a very complex manner. Myocardium activity undergoes regulation both, by nervous and hormonal way. What is important is that these same compounds can influent on heart as both nervous and hormonal factors. For that reason, the regulation of myocardium is still unclear. In this paper, we summarize the existing knowledge regarding cardioactivity and the involvement of insect neurohormones and some peptide hormones from non-neural tissues to regulation of insect myocardium.


Assuntos
Insetos/metabolismo , Neuropeptídeos/fisiologia , Hormônios Peptídicos/fisiologia , Animais
19.
Artigo em Inglês | MEDLINE | ID: mdl-25624163

RESUMO

Insects cope with thermal stressors using mechanisms such as rapid cold hardening and acclimation. These mechanisms have been studied in temperate insects, but little is known about their use by tropical insects in response to cold stress. Here, we investigated whether cold stress (1×8 h and 3×8 h at 4°C) triggers a metabolic response in the Madagascar cockroach Gromphadorhina coquereliana. We examined the effects of cold on the levels of selected metabolites in the fat body tissue of G. coquereliana. After cold exposure, we found that the quantity of total protein increased significantly in the insect fat body, whereas glycogen decreased slightly. Using antibodies, we observed upregulation of AQP-like proteins and changes in the HSP70 levels in the fat body of G. coquereliana when exposed to cold. We also examined the content and nature of the free sugars in the G. coquereliana hemolymph and discovered an increase in the levels of polyols and glucose in response to cold stress. These results suggest an important role of the fat body tissue of tropical insects upon cold exposure.


Assuntos
Metabolismo dos Carboidratos/fisiologia , Proteínas de Insetos/metabolismo , Insetos/fisiologia , Adaptação Fisiológica , Animais , Temperatura Baixa , Corpo Adiposo/fisiologia , Glicogênio/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Hemolinfa/metabolismo , Insetos/metabolismo , Metabolismo dos Lipídeos , Clima Tropical
20.
J Insect Physiol ; 59(11): 1125-32, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23973818

RESUMO

In the present study, we describe the existence of mitochondrial ATP-dependent K(+) channel (mitoKATP) in two different insect tissues, fat body and muscle of cockroach Gromphadorhina coquereliana. We found that pharmacological substances known to modulate potassium channel activity influenced mitochondrial resting respiration. In isolated mitochondria oxygen consumption increased by about 13% in the presence of potassium channel openers (KCOs) such as diazoxide and pinacidil. The opening of mitoKATP was reversed by glibenclamide (potassium channel blocker) and 1 mM ATP. Immunological studies with antibodies raised against the Kir6.1 and SUR1 subunits of the mammalian ATP-sensitive potassium channel, indicated the existence of mitoKATP in insect mitochondria. MitoKATP activation by KCOs resulted in a decrease in superoxide anion production, suggesting that protection against mitochondrial oxidative stress may be a physiological role of mitochondrial ATP-sensitive potassium channel in insects.


Assuntos
Baratas/metabolismo , Corpo Adiposo/metabolismo , Músculos/metabolismo , Canais de Potássio/metabolismo , Análise de Variância , Animais , Imunofluorescência , Radicais Livres/metabolismo , Immunoblotting , Consumo de Oxigênio/fisiologia , Bloqueadores dos Canais de Potássio/metabolismo , Especificidade da Espécie , Superóxidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA