Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mass Spectrom Rev ; 42(2): 617-642, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-34128246

RESUMO

Multilevel proteomics aims to delineate proteins at the peptide (bottom-up proteomics), proteoform (top-down proteomics), and protein complex (native proteomics) levels. Capillary electrophoresis-mass spectrometry (CE-MS) can achieve highly efficient separation and highly sensitive detection of complex mixtures of peptides, proteoforms, and even protein complexes because of its substantial technical progress. CE-MS has become a valuable alternative to the routinely used liquid chromatography-mass spectrometry for multilevel proteomics. This review summarizes the most recent (2019-2021) advances of CE-MS for multilevel proteomics regarding technological progress and biological applications. We also provide brief perspectives on CE-MS for multilevel proteomics at the end, highlighting some future directions and potential challenges.


Assuntos
Proteínas , Proteômica , Proteômica/métodos , Espectrometria de Massas/métodos , Proteínas/análise , Peptídeos , Eletroforese Capilar/métodos
2.
Methods Mol Biol ; 2531: 107-124, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35941482

RESUMO

Capillary zone electrophoresis (CZE) is a fundamentally simple and highly efficient separation technique based on differences in electrophoretic mobilities of analytes. CZE-mass spectrometry (MS) has become an important analytical tool in top-down proteomics which aims to delineate proteoforms in cells comprehensively, because of the improvement of capillary coatings, sample stacking methods, and CE-MS interfaces. Here, we present a CZE-MS/MS-based top-down proteomics procedure for the characterization of a standard protein mixture and an Escherichia coli (E. coli) cell lysate using linear polyacrylamide-coated capillaries, a dynamic pH junction sample stacking method, a commercialized electro-kinetically pumped sheath flow CE-MS interface and an Orbitrap mass spectrometer. CZE-MS/MS can identify hundreds of proteoforms routinely from the E. coli sample with a 1% proteoform-level false discovery rate (FDR).


Assuntos
Proteínas de Escherichia coli , Proteômica , Eletroforese Capilar/métodos , Escherichia coli/química , Proteínas de Escherichia coli/análise , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos
3.
Mol Omics ; 18(2): 112-122, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-34935839

RESUMO

Mass spectrometry (MS)-based spatially resolved top-down proteomics (TDP) of tissues is crucial for understanding the roles played by microenvironmental heterogeneity in the biological functions of organs and for discovering new proteoform biomarkers of diseases. There are few published spatially resolved TDP studies. One of the challenges relates to the limited performance of TDP for the analysis of spatially isolated samples using, for example, laser capture microdissection (LCM) because those samples are usually mass-limited. We present the first pilot study of LCM-capillary zone electrophoresis (CZE)-MS/MS for spatially resolved TDP and used zebrafish brain as the sample. The LCM-CZE-MS/MS platform employed a non-ionic detergent and a freeze-thaw method for efficient proteoform extraction from LCM isolated brain sections followed by CZE-MS/MS without any sample cleanup step, ensuring high sensitivity. Over 400 proteoforms were identified in a CZE-MS/MS analysis of one LCM brain section via consuming the protein content of roughly 250 cells. We observed drastic differences in proteoform profiles between two LCM brain sections isolated from the optic tectum (Teo) and telencephalon (Tel) regions. Proteoforms of three proteins (npy, penkb, and pyya) having neuropeptide hormone activity were exclusively identified in the isolated Tel section. Proteoforms of reticulon, myosin, and troponin were almost exclusively identified in the isolated Teo section, and those proteins play essential roles in visual and motor activities. The proteoform profiles accurately reflected the main biological functions of the Teo and Tel regions of the brain. Additionally, hundreds of post-translationally modified proteoforms were identified.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Animais , Encéfalo , Eletroforese Capilar/métodos , Microdissecção e Captura a Laser , Projetos Piloto , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Peixe-Zebra
4.
Anal Chem ; 92(24): 15890-15898, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33263984

RESUMO

Top-down proteomics (TDP) aims to delineate proteomes in a proteoform-specific manner, which is vital for accurately understanding protein function in cellular processes. It requires high-capacity separation of proteoforms before mass spectrometry (MS) and tandem MS (MS/MS). Capillary isoelectric focusing (cIEF)-MS has been recognized as a useful tool for TDP in the 1990s because cIEF is capable of high-resolution separation of proteoforms. Previous cIEF-MS studies concentrated on measuring the protein's mass without MS/MS, impeding the confident proteoform identification in complex samples and the accurate localization of post-translational modifications on proteoforms. Herein, for the first time, we present automated cIEF-MS/MS-based TDP for large-scale delineation of proteoforms in complex proteomes. Single-shot cIEF-MS/MS identified 711 proteoforms from an Escherichia coli (E. coli) proteome consuming only nanograms of proteins. Coupling two-dimensional size-exclusion chromatography (SEC)-cIEF to ESI-MS/MS enabled the identification of nearly 2000 proteoforms from the E. coli proteome. Label-free quantitative TDP of zebrafish male and female brains using SEC-cIEF-MS/MS quantified thousands of proteoforms and revealed sex-dependent proteoform profiles in brains. Particularly, we discovered several proteolytic proteoforms of pro-opiomelanocortin and prodynorphin with significantly higher abundance in male zebrafish brains as potential endogenous hormone proteoforms. Multilevel quantitative proteomics (TDP and bottom-up proteomics) of the brains revealed that the majority of proteoforms having statistically significant difference in abundance between genders showed no abundance difference at the protein group level. This work represents the first multilevel quantitative proteomics study of sexual dimorphism of the brain.


Assuntos
Automação , Proteínas de Escherichia coli/análise , Proteoma/análise , Proteômica , Animais , Encéfalo , Focalização Isoelétrica , Masculino , Tamanho da Partícula , Propriedades de Superfície , Espectrometria de Massas em Tandem , Peixe-Zebra
5.
Anal Chem ; 92(5): 3503-3507, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32043875

RESUMO

Large-scale top-down proteomics characterizes proteoforms in cells globally with high confidence and high throughput using reversed-phase liquid chromatography (RPLC)-tandem mass spectrometry (MS/MS) or capillary zone electrophoresis (CZE)-MS/MS. The false discovery rate (FDR) from the target-decoy database search is typically deployed to filter identified proteoforms to ensure high-confidence identifications (IDs). It has been demonstrated that the FDRs in top-down proteomics can be drastically underestimated. An alternative approach to the FDR can be useful for further evaluating the confidence of proteoform IDs after the database search. We argue that predicting retention/migration time of proteoforms from the RPLC/CZE separation accurately and comparing their predicted and experimental separation time could be a useful and practical approach. Based on our knowledge, there is still no report in the literature about predicting separation time of proteoforms using large top-down proteomics data sets. In this pilot study, for the first time, we evaluated various semiempirical models for predicting proteoforms' electrophoretic mobility (µef) using large-scale top-down proteomics data sets from CZE-MS/MS. We achieved a linear correlation between experimental and predicted µef of E. coli proteoforms (R2 = 0.98) with a simple semiempirical model, which utilizes the number of charges and molecular mass of each proteoform as the parameters. Our modeling data suggest that the complete unfolding of proteoforms during CZE separation benefits the prediction of their µef. Our results also indicate that N-terminal acetylation and phosphorylation both decrease the proteoforms' charge by roughly one charge unit.


Assuntos
Eletroforese , Proteômica/métodos
6.
Trends Analyt Chem ; 1202019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31537953

RESUMO

Mass spectrometry (MS)-based top-down proteomics characterizes complex proteomes at the intact proteoform level and provides an accurate picture of protein isoforms and protein post-translational modifications in the cell. The progress of top-down proteomics requires novel analytical tools with high peak capacity for proteoform separation and high sensitivity for proteoform detection. The requirements have made capillary zone electrophoresis (CZE)-MS an attractive approach for advancing large-scale top-down proteomics. CZE has achieved a peak capacity of 300 for separation of complex proteoform mixtures. CZE-MS has shown drastically better sensitivity than commonly used reversed-phase liquid chromatography (RPLC)-MS for proteoform detection. The advanced CZE-MS identified 6,000 proteoforms of nearly 1,000 proteoform families from a complex proteome sample, which represents one of the largest top-down proteomic datasets so far. In this review, we focus on the recent progress in CZE-MS-based top-down proteomics and provide our perspectives about its future directions.

7.
Talanta ; 202: 165-170, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31171165

RESUMO

Attapulgite nanoparticles have good chemical properties and can be modified easily for broad applications. In this work, for the first time, attapulgite nanoparticles were employed to modify the inner wall of separation capillaries for capillary zone electrophoresis-tandem mass spectrometry (CZE-MS/MS)-based top-down proteomics. The attapulgite nanoparticles and the inner wall of a fused silica capillary were first functionalized with γ-methacryloxypropyl trimethoxysilane. Then the modified nanoparticles and acrylamide were copolymerized in the fused silica capillary with the assistance of azobisisobutyronitrile and heat. The incorporation of high-surface-area nanoparticles in the linear polyacrylamide (LPA) coating resulted in significantly lower electroosmotic mobility compared with the typical LPA coating (3.48 × 10-5 vs. 9.03 × 10-5 cm2 V-1 S-1), most likely because more LPA molecules were immobilized on the inner wall of the separation capillary. The attapulgite nanoparticles functionalized separation capillaries have shown great stability and reproducibility across 43 discontinuous CZE-MS runs of a standard protein mixture. We applied the CZE-MS/MS system for top-down proteomics of Escherichia coli cells. In a proof-of-principle experiment, the CZE-MS/MS system achieved a 90-min separation window and a 1-µL sample loading volume, leading to nearly 300 proteoform and 135 protein identifications in a single run. Many post-translational modifications (PTMs) were identified, including methylation, acetylation, phosphorylation, biotinylation, succinylation, and disulfide bond.

8.
J Am Soc Mass Spectrom ; 30(8): 1435-1445, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30972727

RESUMO

Capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry (CZE-ESI-MS/MS) has attracted attention recently for top-down proteomics because it can achieve highly efficient separation and very sensitive detection of proteins. However, separation window and sample loading volume of CZE need to be boosted for a better proteome coverage using CZE-MS/MS. Here, we present an improved CZE-MS/MS system that achieved a 180-min separation window and a 2-µL sample loading volume for top-down characterization of protein mixtures. The system obtained highly efficient separation of proteins with nearly one million theoretical plates for myoglobin and enabled baseline separation of three different proteoforms of myoglobin. The CZE-MS/MS system identified 797 ± 21 proteoforms and 258 ± 7 proteins (n = 2) from an Escherichia coli (E. coli) proteome sample in a single run with only 250 ng of proteins injected. The system still identified 449 ± 40 proteoforms and 173 ± 6 proteins (n = 2) from the E. coli sample when only 25 ng of proteins were injected per run. Single-shot CZE-MS/MS analyses of zebrafish brain cerebellum (Cb) and optic tectum (Teo) regions identified 1730 ± 196 proteoforms (n = 3) and 2024 ± 255 proteoforms (n = 3), respectively, with only 500-ng proteins loaded per run. Label-free quantitative top-down proteomics of zebrafish brain Cb and Teo regions revealed significant differences between Cb and Teo regarding the proteoform abundance. Over 700 proteoforms from 131 proteins had significantly higher abundance in Cb compared to Teo, and these proteins were highly enriched in several biological processes, including muscle contraction, glycolytic process, and mesenchyme migration. Graphical Abstract.


Assuntos
Proteínas/análise , Proteômica/métodos , Animais , Bovinos , Eletroforese Capilar/métodos , Escherichia coli/química , Proteínas de Escherichia coli/análise , Cavalos , Mioglobina/análise , Proteoma/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos
9.
J Proteome Res ; 18(3): 878-889, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30638379

RESUMO

Top-down mass spectrometry is capable of identifying whole proteoform sequences with multiple post-translational modifications because it generates tandem mass spectra directly from intact proteoforms. Many software tools, such as ProSightPC, MSPathFinder, and TopMG, have been proposed for identifying proteoforms with modifications. In these tools, various methods are employed to estimate the statistical significance of identifications. However, most existing methods are designed for proteoform identifications without modifications, and the challenge remains for accurately estimating the statistical significance of proteoform identifications with modifications. Here we propose TopMCMC, a method that combines a Markov chain random walk algorithm and a greedy algorithm for assigning statistical significance to matches between spectra and protein sequences with variable modifications. Experimental results showed that TopMCMC achieved high accuracy in estimating E-values and false discovery rates of identifications in top-down mass spectrometry. Coupled with TopMG, TopMCMC identified more spectra than the generating function method from an MCF-7 top-down mass spectrometry data set.


Assuntos
Método de Monte Carlo , Proteoma/metabolismo , Proteômica/métodos , Algoritmos , Conjuntos de Dados como Assunto , Humanos , Células MCF-7 , Cadeias de Markov , Processamento de Proteína Pós-Traducional , Proteínas/análise , Software , Espectrometria de Massas em Tandem/métodos
10.
Anal Chem ; 90(9): 5529-5533, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29620868

RESUMO

Capillary zone electrophoresis (CZE)-tandem mass spectrometry (MS/MS) has been recognized as a useful tool for top-down proteomics. However, its performance for deep top-down proteomics is still dramatically lower than widely used reversed-phase liquid chromatography (RPLC)-MS/MS. We present an orthogonal multidimensional separation platform that couples size exclusion chromatography (SEC) and RPLC based protein prefractionation to CZE-MS/MS for deep top-down proteomics of Escherichia coli. The platform generated high peak capacity (∼4000) for separation of intact proteins, leading to the identification of 5700 proteoforms from the Escherichia coli proteome. The data represents a 10-fold improvement in the number of proteoform identifications compared with previous CZE-MS/MS studies and represents the largest bacterial top-down proteomics data set reported to date. The performance of the CZE-MS/MS based platform is comparable to the state-of-the-art RPLC-MS/MS based systems in terms of the number of proteoform identifications and the instrument time.


Assuntos
Proteínas de Escherichia coli/análise , Escherichia coli/química , Proteoma/análise , Proteômica , Eletroforese Capilar , Espectrometria de Massas em Tandem
11.
Anal Chem ; 89(22): 12059-12067, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29064224

RESUMO

Capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry (CZE-ESI-MS/MS) has been recognized as an invaluable platform for top-down proteomics. However, the scale of top-down proteomics using CZE-MS/MS is still limited due to the low loading capacity and narrow separation window of CZE. In this work, for the first time we systematically evaluated the dynamic pH junction method for focusing of intact proteins during CZE-MS. The optimized dynamic pH junction-based CZE-MS/MS approached a 1 µL loading capacity, 90 min separation window, and high peak capacity (∼280) for characterization of an Escherichia coli proteome. The results represent the largest loading capacity and the highest peak capacity of CZE for top-down characterization of complex proteomes. Single-shot CZE-MS/MS identified about 2800 proteoform-spectrum matches, nearly 600 proteoforms, and 200 proteins from the Escherichia coli proteome with spectrum-level false discovery rate (FDR) less than 1%. The number of identified proteoforms in this work is over three times higher than that in previous single-shot CZE-MS/MS studies. Truncations, N-terminal methionine excision, signal peptide removal, and some post-translational modifications including oxidation and acetylation were detected.


Assuntos
Proteínas de Escherichia coli/análise , Escherichia coli/química , Proteoma/análise , Proteômica , Eletroforese Capilar , Concentração de Íons de Hidrogênio , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA