Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37886553

RESUMO

Men of African descent have the highest prostate cancer (CaP) incidence and mortality rates, yet the genetic basis of CaP in African men has been understudied. We used genomic data from 3,963 CaP cases and 3,509 controls recruited in Ghana, Nigeria, Senegal, South Africa, and Uganda, to infer ancestry-specific genetic architectures and fine-mapped disease associations. Fifteen independent associations at 8q24.21, 6q22.1, and 11q13.3 reached genome-wide significance, including four novel associations. Intriguingly, multiple lead SNPs are private alleles, a pattern arising from recent mutations and the out-of-Africa bottleneck. These African-specific alleles contribute to haplotypes with odds ratios above 2.4. We found that the genetic architecture of CaP differs across Africa, with effect size differences contributing more to this heterogeneity than allele frequency differences. Population genetic analyses reveal that African CaP associations are largely governed by neutral evolution. Collectively, our findings emphasize the utility of conducting genetic studies that use diverse populations.

2.
Nat Genet ; 48(1): 30-5, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26569126

RESUMO

We report targeted sequencing of 63 known prostate cancer risk regions in a multi-ancestry study of 9,237 men and use the data to explore the contribution of low-frequency variation to disease risk. We show that SNPs with minor allele frequencies (MAFs) of 0.1-1% explain a substantial fraction of prostate cancer risk in men of African ancestry. We estimate that these SNPs account for 0.12 (standard error (s.e.) = 0.05) of variance in risk (∼42% of the variance contributed by SNPs with MAF of 0.1-50%). This contribution is much larger than the fraction of neutral variation due to SNPs in this class, implying that natural selection has driven down the frequency of many prostate cancer risk alleles; we estimate the coupling between selection and allelic effects at 0.48 (95% confidence interval [0.19, 0.78]) under the Eyre-Walker model. Our results indicate that rare variants make a disproportionate contribution to genetic risk for prostate cancer and suggest the possibility that rare variants may also have an outsize effect on other common traits.


Assuntos
Polimorfismo de Nucleotídeo Único , Neoplasias da Próstata/genética , Idoso , Povo Asiático/genética , População Negra/genética , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Frequência do Gene , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Uganda
3.
Hum Mol Genet ; 25(2): 371-81, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26604137

RESUMO

Prostate cancer is the most common non-skin cancer in males, with a ∼1.5-2-fold higher incidence in African American men when compared with whites. Epidemiologic evidence supports a large heritable contribution to prostate cancer, with over 100 susceptibility loci identified to date that can explain ∼33% of the familial risk. To explore the contribution of both rare and common variation in coding regions to prostate cancer risk, we sequenced the exomes of 2165 prostate cancer cases and 2034 controls of African ancestry at a mean coverage of 10.1×. We identified 395 220 coding variants down to 0.05% frequency [57% non-synonymous (NS), 42% synonymous and 1% gain or loss of stop codon or splice site variant] in 16 751 genes with the strongest associations observed in SPARCL1 on 4q22.1 (rs13051, Ala49Asp, OR = 0.78, P = 1.8 × 10(-6)) and PTPRR on 12q15 (rs73341069, Val239Ile, OR = 1.62, P = 2.5 × 10(-5)). In gene-level testing, the two most significant genes were C1orf100 (P = 2.2 × 10(-4)) and GORAB (P = 2.3 × 10(-4)). We did not observe exome-wide significant associations (after correcting for multiple hypothesis testing) in single variant or gene-level testing in the overall case-control or case-case analyses of disease aggressiveness. In this first whole-exome sequencing study of prostate cancer, our findings do not provide strong support for the hypothesis that NS coding variants down to 0.5-1.0% frequency have large effects on prostate cancer risk in men of African ancestry. Higher-coverage sequencing efforts in larger samples will be needed to study rarer variants with smaller effect sizes associated with prostate cancer risk.


Assuntos
População Negra/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Neoplasias da Próstata/genética , Análise de Sequência de DNA , Adulto , Idoso , Exoma , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias da Próstata/epidemiologia , Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA