Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Appl Clin Med Phys ; 25(4): e14260, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38243628

RESUMO

PURPOSE: To investigate bolus design and VMAT optimization settings for total scalp irradiation. METHODS: Three silicone bolus designs (flat, hat, and custom) from .decimal were evaluated for adherence to five anthropomorphic head phantoms. Flat bolus was cut from a silicone sheet. Generic hat bolus resembles an elongated swim cap while custom bolus is manufactured by injecting silicone into a 3D printed mold. Bolus placement time was recorded. Air gaps between bolus and scalp were quantified on CT images. The dosimetric effect of air gaps on target coverage was evaluated in a treatment planning study where the scalp was planned to 60 Gy in 30 fractions. A noncoplanar VMAT technique based on gEUD penalties was investigated that explored the full range of gEUD alpha values to determine which settings achieve sufficient target coverage while minimizing brain dose. ANOVA and the t-test were used to evaluate statistically significant differences (threshold = 0.05). RESULTS: The flat bolus took 32 ± 5.9 min to construct and place, which was significantly longer (p < 0.001) compared with 0.67 ± 0.2 min for the generic hat bolus or 0.53 ± 0.10 min for the custom bolus. The air gap volumes were 38 ± 9.3 cc, 32 ± 14 cc, and 17 ± 7.0 cc for the flat, hat, and custom boluses, respectively. While the air gap differences between the flat and custom boluses were significant (p = 0.011), there were no significant dosimetric differences in PTV coverage at V57Gy or V60Gy. In the VMAT optimization study, a gEUD alpha of 2 was found to minimize the mean brain dose. CONCLUSIONS: Two challenging aspects of total scalp irradiation were investigated: bolus design and plan optimization. Results from this study show opportunities to shorten bolus fabrication time during simulation and create high quality treatment plans using a straightforward VMAT template with simple optimization settings.


Assuntos
Radioterapia de Intensidade Modulada , Humanos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Couro Cabeludo/efeitos da radiação , Silicones
2.
Cureus ; 15(7): e41260, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37529805

RESUMO

This study evaluated the feasibility of using artificial intelligence (AI) segmentation software for volume-modulated arc therapy (VMAT) prostate planning in conjunction with knowledge-based planning to facilitate a fully automated workflow. Two commercially available AI software programs, Radformation AutoContour (Radformation, New York, NY) and Siemens AI-Rad Companion (Siemens Healthineers, Malvern, PA) were used to auto-segment the rectum, bladder, femoral heads, and bowel bag on 30 retrospective clinical cases (10 intact prostate, 10 prostate bed, and 10 prostate and lymph node). Physician-segmented target volumes were transferred to AI structure sets. In-house RapidPlan models were used to generate plans using the original, physician-segmented structure sets as well as Radformation and Siemens AI-generated structure sets. Thus, there were three plans for each of the 30 cases, totaling 90 plans. Following RapidPlan optimization, planning target volume (PTV) coverage was set to 95%. Then, the plans optimized using AI structures were recalculated on the physician structure set with fixed monitor units. In this way, physician contours were used as the gold standard for identifying any clinically relevant differences in dose distributions. One-way analysis of variation (ANOVA) was used for statistical analysis. No statistically significant differences were observed across the three sets of plans for intact prostate, prostate bed, or prostate and lymph nodes. The results indicate that an automated volumetric modulated arc therapy (VMAT) prostate planning workflow can consistently achieve high plan quality. However, our results also show that small but consistent differences in contouring preferences may lead to subtle differences in planning results. Therefore, the clinical implementation of auto-contouring should be carefully validated.

3.
Med Dosim ; 48(4): 273-278, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37495460

RESUMO

The goal of this study is to investigate the Pareto optimal tradeoffs between target coverage and hippocampal sparing using knowledge-based multicriteria optimization (MCO). Ten prior clinical cases were selected that were treated with hippocampal avoidance whole brain radiotherapy (HA-WBRT) using VMAT. A new, balanced plan was generated for each case using an in-house RapidPlan model in the Eclipse V16.1 treatment planning system. The MCO decision support tool was used to create 4 Pareto optimal plans. The Pareto optimal plans were created using PTV Dmin and hippocampus Dmax as tradeoff criteria. The tradeoff plans were generated for each patient by adjusting PTV Dmin from the value achieved by the corresponding balanced plan in fixed intervals as follows: -4 Gy, -2 Gy, +2 Gy, and +4 Gy. All plans were normalized so that 95% of the PTV was covered by the prescription dose. A 1-way ANOVA, with Geisser-Greenhouse correction, was used for statistical analysis. When evaluating the achieved PTV Dmin and D98%, the results showed the dose to the hippocampus decreased as coverage lowered and in comparison, D98% was higher when the PTV coverage was increased. When comparing multiple tradeoffs, the p-value for PTV D98% was 0.0026, and the p-values for PTV D2%, PTV Dmin, Hippocampus Dmax, Dmin, and Dmean were all less than 0.0001, indicating that the tradeoff plans achieved statistically significant differences. The results also showed that Pareto optimal plans failed to reduce hippocampal dose beyond a certain point, indicating more limited achievability of the MCO-navigated plans than the interface suggested. This study presents valuable data for planning results for HA-WBRT using MCO. MCO has shown to be mostly effective in adjusting the tradeoff between PTV coverage and hippocampal dose.


Assuntos
Tratamentos com Preservação do Órgão , Radioterapia de Intensidade Modulada , Humanos , Tratamentos com Preservação do Órgão/métodos , Órgãos em Risco , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Hipocampo , Radioterapia de Intensidade Modulada/métodos
4.
J Appl Clin Med Phys ; 24(10): e14064, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37345557

RESUMO

In this work, we demonstrate a method for rapid synthesis of high-quality CT images from unpaired, low-quality CBCT images, permitting CBCT-based adaptive radiotherapy. We adapt contrastive unpaired translation (CUT) to be used with medical images and evaluate the results on an institutional pelvic CT dataset. We compare the method against cycleGAN using mean absolute error, structural similarity index, root mean squared error, and Frèchet Inception Distance and show that CUT significantly outperforms cycleGAN while requiring less time and fewer resources. The investigated method improves the feasibility of online adaptive radiotherapy over the present state-of-the-art.


Assuntos
Tomografia Computadorizada de Feixe Cônico Espiral , Humanos , Tomografia Computadorizada de Feixe Cônico/métodos , Processamento de Imagem Assistida por Computador/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos
5.
Med Dosim ; 48(1): 44-50, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36400649

RESUMO

The implementation of knowledge-based planning (KBP) continues to grow in radiotherapy clinics. KBP guides radiation treatment design by generating clinically acceptable plans in a timely and resource-efficient manner. The role of multiple KBP models tailored for variations within a disease site remains undefined in part because of the substantial effort and number of training cases required to create a high-quality KBP model. In this study, our aim was to explore whether site-specific KBP models lead to clinically meaningful differences in plan quality for head-and-neck (HN) patients when compared to a general model. One KBP model was created from prior volumetric-modulated arc therapy (VMAT) cases that treated unilateral HN lymph nodes while another model was created from VMAT cases that treated bilateral HN nodes. Thirty cases from each model (60 cases total) were randomly selected to create a third, general model. These models were applied to 60 HN test cases - 30 unilateral and 30 bilateral - to generate 180 VMAT plans in Eclipse. Clinically relevant dose metrics were compared between models. Paired-sample t-tests were used for statistical analysis, with the threshold for statistical significance set a priori at 0.007, taking into consideration multiple hypothesis testing to avoid type I error. For unilateral test cases, the unilateral model-generated plans had significantly lower spinal cord maximum doses (12.1 Gy vs 19.3 Gy, p < 0.001) and oral cavity mean doses (20.8 Gy vs 23.0 Gy, p < 0.001), compared with the bilateral model-generated plans. The unilateral and general models generated comparable plans for unilateral HN test cases. For bilateral test cases, the bilateral model created plans had significantly lower brainstem maximum doses (10.8 Gy vs 12.2 Gy, p < 0.001) and parotid mean doses (24.0 Gy vs 25.5 Gy, p < 0.001) when compared to the unilateral model. Right parotid mean doses were lower for bilateral model plans compared to general model plans (23.8 Gy vs 24.4 Gy). The general model created plans with significantly lower brainstem maximum doses (10.3 Gy vs 10.8 Gy) and oral cavity mean doses (35.3 Gy vs 36.7 Gy) when compared with bilateral model-generated plans. The general model outperformed the bilateral model in several dose metrics but they were not deemed clinically significant. For both case sets, the unilateral and general model created plans had higher monitor units when compared to the bilateral model, likely due to more stringent constraint settings. All other dose metrics were comparable. This study demonstrates that a balanced general HN model created using carefully curated treatment plans can produce high quality plans comparable to dedicated unilateral and bilateral models.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Dosagem Radioterapêutica , Pescoço , Glândula Parótida , Órgãos em Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA