Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Genet Genomics ; 294(3): 531-548, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30406402

RESUMO

Competence for natural transformation is a widespread developmental process of streptococci. By allowing the uptake and recombination of exogenous naked DNA into the genome, natural transformation, as transposable elements, plays a key role in the plasticity of bacterial genomes. We previously analysed the insertion sites of IS1548, an insertion sequence present in Streptococcus agalactiae and S. pyogenes, and showed that some targeted loci are involved in competence induction. In this work, we investigated on a large scale if loci coding for early competence factors (ComX and the two pheromone-dependent signalling systems ComCDE and ComRS) of streptococci are especially targeted by transposable elements. The transposable elements inserted in regions surrounding these genes and housekeeping genes used for Multilocus Sequence Typing (MLST) were systematically searched for. We found numerous insertion events in the close vicinity of early competence genes, but only very few into the MLST loci. The incidence of transposable elements, mainly insertion sequences, is particularly high in the intergenic regions surrounding comX alleles in numerous species belonging to most streptococcal groups. The identification of scarce disruptive insertions inside early competence genes indicates that the maintenance of competence is essential for streptococci. The specific association of transposable elements with intergenic regions bordering the main regulatory genes of competence may impact on the induction of transformability and so, on the genome plasticity and adaptive evolution of streptococci. This widespread phenomenon brings new perspectives on our understanding of competence regulation and its role in the bacterial life cycle.


Assuntos
Elementos de DNA Transponíveis/genética , Genes Bacterianos/genética , Genoma Bacteriano/genética , Streptococcus/genética , Sítios de Ligação/genética , DNA Intergênico/genética , Regulação Bacteriana da Expressão Gênica , Tipagem de Sequências Multilocus , Mutagênese Insercional , Filogenia , Especificidade da Espécie , Streptococcus/classificação
2.
Pathogens ; 3(2): 309-40, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25437802

RESUMO

Pseudomonas aeruginosa is a Gram-negative environmental species and an opportunistic microorganism, establishing itself in vulnerable patients, such as those with cystic fibrosis (CF) or those hospitalized in intensive care units (ICU). It has become a major cause of nosocomial infections worldwide and a serious threat to Public Health because of overuse and misuse of antibiotics that have selected highly resistant strains against which very few therapeutic options exist. Herein is illustrated the intraclonal evolution of the genome of sequential isolates collected in a single CF patient from the early phase of pulmonary colonization to the fatal outcome. We also examined at the whole genome scale a pair of genotypically-related strains made of a drug susceptible, environmental isolate recovered from an ICU sink and of its multidrug resistant counterpart found to infect an ICU patient. Multiple genetic changes accumulated in the CF isolates over the disease time course including SNPs, deletion events and reduction of whole genome size. The strain isolated from the ICU patient displayed an increase in the genome size of 4.8% with major genetic rearrangements as compared to the initial environmental strain. The annotated genomes are given in free access in an interactive web application WallGene  designed to facilitate large-scale comparative analysis and thus allowing investigators to explore homologies and syntenies between P. aeruginosa strains, here PAO1 and the five clinical strains described.

3.
Appl Environ Microbiol ; 80(15): 4626-39, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24837380

RESUMO

Next-generation sequencing (NGS) opens up exciting possibilities for improving our knowledge of environmental microbial diversity, allowing rapid and cost-effective identification of both cultivated and uncultivated microorganisms. However, library preparation, sequencing, and analysis of the results can provide inaccurate representations of the studied community compositions. Therefore, all these steps need to be taken into account carefully. Here we evaluated the effects of DNA extraction methods, targeted 16S rRNA hypervariable regions, and sample origins on the diverse microbes detected by 454 pyrosequencing in marine cold seep and hydrothermal vent sediments. To assign the reads with enough taxonomic precision, we built a database with about 2,500 sequences from Archaea and Bacteria from deep-sea marine sediments, affiliated according to reference publications in the field. Thanks to statistical and diversity analyses as well as inference of operational taxonomic unit (OTU) networks, we show that (i) while DNA extraction methods do not seem to affect the results for some samples, they can lead to dramatic changes for others; and (ii) the choice of amplification and sequencing primers also considerably affects the microbial community detected in the samples. Thereby, very different proportions of pyrosequencing reads were obtained for some microbial lineages, such as the archaeal ANME-1, ANME-2c, and MBG-D and deltaproteobacterial subgroups. This work clearly indicates that the results from sequencing-based analyses, such as pyrosequencing, should be interpreted very carefully. Therefore, the combination of NGS with complementary approaches, such as fluorescence in situ hybridization (FISH)/catalyzed reporter deposition (CARD)-FISH or quantitative PCR (Q-PCR), would be desirable to gain a more comprehensive picture of environmental microbial communities.


Assuntos
Métodos Analíticos de Preparação de Amostras/métodos , Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Biodiversidade , Sedimentos Geológicos/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Primers do DNA/genética , DNA Arqueal/genética , DNA Arqueal/isolamento & purificação , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Ecossistema , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/isolamento & purificação
4.
Genome Announc ; 1(3)2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23704179

RESUMO

Nucleic acid of the strain Lactobacillus plantarum UCMA 3037, isolated from raw milk camembert cheese in our laboratory, was sequenced. We present its draft genome sequence with the aim of studying its functional properties and relationship to the cheese ecosystem.

5.
Orphanet J Rare Dis ; 7: 45, 2012 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-22776072

RESUMO

BACKGROUND: Dystrophin is a large essential protein of skeletal and heart muscle. It is a filamentous scaffolding protein with numerous binding domains. Mutations in the DMD gene, which encodes dystrophin, mostly result in the deletion of one or several exons and cause Duchenne (DMD) and Becker (BMD) muscular dystrophies. The most common DMD mutations are frameshift mutations resulting in an absence of dystrophin from tissues. In-frame DMD mutations are less frequent and result in a protein with partial wild-type dystrophin function. The aim of this study was to highlight structural and functional modifications of dystrophin caused by in-frame mutations. METHODS AND RESULTS: We developed a dedicated database for dystrophin, the eDystrophin database. It contains 209 different non frame-shifting mutations found in 945 patients from a French cohort and previous studies. Bioinformatics tools provide models of the three-dimensional structure of the protein at deletion sites, making it possible to determine whether the mutated protein retains the typical filamentous structure of dystrophin. An analysis of the structure of mutated dystrophin molecules showed that hybrid repeats were reconstituted at the deletion site in some cases. These hybrid repeats harbored the typical triple coiled-coil structure of native repeats, which may be correlated with better function in muscle cells. CONCLUSION: This new database focuses on the dystrophin protein and its modification due to in-frame deletions in BMD patients. The observation of hybrid repeat reconstitution in some cases provides insight into phenotype-genotype correlations in dystrophin diseases and possible strategies for gene therapy. The eDystrophin database is freely available: http://edystrophin.genouest.org/.


Assuntos
Distrofina/genética , Estudos de Associação Genética , Distrofia Muscular de Duchenne/genética , Mutação , Fases de Leitura/genética , Adolescente , Biologia Computacional , Bases de Dados Genéticas , Éxons/genética , Feminino , Genótipo , Humanos , Internet , Masculino , Distrofia Muscular de Duchenne/patologia
6.
Nucleic Acids Res ; 40(17): 8255-65, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22730288

RESUMO

Enhancers are developmentally controlled transcriptional regulatory regions whose activities are modulated through histone modifications or histone variant deposition. In this study, we show by genome-wide mapping that the newly discovered deoxyribonucleic acid (DNA) modification 5-hydroxymethylcytosine (5hmC) is dynamically associated with transcription factor binding to distal regulatory sites during neural differentiation of mouse P19 cells and during adipocyte differentiation of mouse 3T3-L1 cells. Functional annotation reveals that regions gaining 5hmC are associated with genes expressed either in neural tissues when P19 cells undergo neural differentiation or in adipose tissue when 3T3-L1 cells undergo adipocyte differentiation. Furthermore, distal regions gaining 5hmC together with H3K4me2 and H3K27ac in P19 cells behave as differentiation-dependent transcriptional enhancers. Identified regions are enriched in motifs for transcription factors regulating specific cell fates such as Meis1 in P19 cells and PPARγ in 3T3-L1 cells. Accordingly, a fraction of hydroxymethylated Meis1 sites were associated with a dynamic engagement of the 5-methylcytosine hydroxylase Tet1. In addition, kinetic studies of cytosine hydroxymethylation of selected enhancers indicated that DNA hydroxymethylation is an early event of enhancer activation. Hence, acquisition of 5hmC in cell-specific distal regulatory regions may represent a major event of enhancer progression toward an active state and participate in selective activation of tissue-specific genes.


Assuntos
Diferenciação Celular/genética , Metilação de DNA , Elementos Facilitadores Genéticos , Células 3T3-L1 , 5-Metilcitosina/análogos & derivados , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Cromatina/metabolismo , Citosina/análogos & derivados , Citosina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Homeodomínio/metabolismo , Camundongos , Proteína Meis1 , Proteínas de Neoplasias/metabolismo , Neurogênese/genética , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição/metabolismo
7.
BMC Microbiol ; 11: 105, 2011 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-21575179

RESUMO

BACKGROUND: Superoxide reductases (SOR) catalyse the reduction of superoxide anions to hydrogen peroxide and are involved in the oxidative stress defences of anaerobic and facultative anaerobic organisms. Genes encoding SOR were discovered recently and suffer from annotation problems. These genes, named sor, are short and the transfer of annotations from previously characterized neelaredoxin, desulfoferrodoxin, superoxide reductase and rubredoxin oxidase has been heterogeneous. Consequently, many sor remain anonymous or mis-annotated. DESCRIPTION: SORGOdb is an exhaustive database of SOR that proposes a new classification based on domain architecture. SORGOdb supplies a simple user-friendly web-based database for retrieving and exploring relevant information about the proposed SOR families. The database can be queried using an organism name, a locus tag or phylogenetic criteria, and also offers sequence similarity searches using BlastP. Genes encoding SOR have been re-annotated in all available genome sequences (prokaryotic and eukaryotic (complete and in draft) genomes, updated in May 2010). CONCLUSIONS: SORGOdb contains 325 non-redundant and curated SOR, from 274 organisms. It proposes a new classification of SOR into seven different classes and allows biologists to explore and analyze sor in order to establish correlations between the class of SOR and organism phenotypes. SORGOdb is freely available at http://sorgo.genouest.org/index.php.


Assuntos
Bases de Dados Genéticas , Oxirredutases/genética , Oxirredutases/química , Oxirredutases/classificação , Estrutura Terciária de Proteína
8.
Genome Res ; 21(4): 555-65, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21233399

RESUMO

Transcription factors (TFs) bind specifically to discrete regions of mammalian genomes called cis-regulatory elements. Among those are enhancers, which play key roles in regulation of gene expression during development and differentiation. Despite the recognized central regulatory role exerted by chromatin in control of TF functions, much remains to be learned regarding the chromatin structure of enhancers and how it is established. Here, we have analyzed on a genomic-scale enhancers that recruit FOXA1, a pioneer transcription factor that triggers transcriptional competency of these cis-regulatory sites. Importantly, we found that FOXA1 binds to genomic regions showing local DNA hypomethylation and that its cell-type-specific recruitment to chromatin is linked to differential DNA methylation levels of its binding sites. Using neural differentiation as a model, we showed that induction of FOXA1 expression and its subsequent recruitment to enhancers is associated with DNA demethylation. Concomitantly, histone H3 lysine 4 methylation is induced at these enhancers. These epigenetic changes may both stabilize FOXA1 binding and allow for subsequent recruitment of transcriptional regulatory effectors. Interestingly, when cloned into reporter constructs, FOXA1-dependent enhancers were able to recapitulate their cell type specificity. However, their activities were inhibited by DNA methylation. Hence, these enhancers are intrinsic cell-type-specific regulatory regions of which activities have to be potentiated by FOXA1 through induction of an epigenetic switch that includes notably DNA demethylation.


Assuntos
Elementos Facilitadores Genéticos , Epigenômica , Fator 3-alfa Nuclear de Hepatócito/genética , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Animais , Sítios de Ligação/genética , Diferenciação Celular/genética , Linhagem Celular Tumoral , Cromatina/metabolismo , Metilação de DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Humanos , Camundongos , Modelos Genéticos , Neurônios/citologia , Neurônios/metabolismo
9.
BMC Microbiol ; 10: 88, 2010 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-20331850

RESUMO

BACKGROUND: The functions of proteins are strongly related to their localization in cell compartments (for example the cytoplasm or membranes) but the experimental determination of the sub-cellular localization of proteomes is laborious and expensive. A fast and low-cost alternative approach is in silico prediction, based on features of the protein primary sequences. However, biologists are confronted with a very large number of computational tools that use different methods that address various localization features with diverse specificities and sensitivities. As a result, exploiting these computer resources to predict protein localization accurately involves querying all tools and comparing every prediction output; this is a painstaking task. Therefore, we developed a comprehensive database, called CoBaltDB, that gathers all prediction outputs concerning complete prokaryotic proteomes. DESCRIPTION: The current version of CoBaltDB integrates the results of 43 localization predictors for 784 complete bacterial and archaeal proteomes (2.548.292 proteins in total). CoBaltDB supplies a simple user-friendly interface for retrieving and exploring relevant information about predicted features (such as signal peptide cleavage sites and transmembrane segments). Data are organized into three work-sets ("specialized tools", "meta-tools" and "additional tools"). The database can be queried using the organism name, a locus tag or a list of locus tags and may be browsed using numerous graphical and text displays. CONCLUSIONS: With its new functionalities, CoBaltDB is a novel powerful platform that provides easy access to the results of multiple localization tools and support for predicting prokaryotic protein localizations with higher confidence than previously possible. CoBaltDB is available at http://www.umr6026.univ-rennes1.fr/english/home/research/basic/software/cobalten.


Assuntos
Biologia Computacional/métodos , Sistemas de Gerenciamento de Base de Dados , Bases de Dados Genéticas , Genes Arqueais , Genes Bacterianos , Fases de Leitura Aberta , Simulação por Computador , Armazenamento e Recuperação da Informação/métodos , Software , Interface Usuário-Computador
10.
Microbiology (Reading) ; 154(Pt 1): 16-29, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18174122

RESUMO

The importance of Csr post-transcriptional systems is gradually emerging; these systems control a variety of virulence-linked physiological traits in many pathogenic bacteria. This review focuses on the central role that Csr systems play in the pathogenesis of certain bacteria and in the establishment of successful infections in animal hosts. Csr systems appear to control the 'switch' between different physiological states in the infection process; for example switching pathogens from a colonization state to a persistence state. Csr systems are controlled by two-component sensor/regulator systems and by non-coding RNAs. In addition, recent findings suggest that the RNA chaperone Hfq may play an integral role in Csr-mediated bacterial adaptation to the host environment.


Assuntos
Fenômenos Fisiológicos Bacterianos , Proteínas de Bactérias/fisiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Proteínas de Ligação a RNA/fisiologia , Animais , Virulência
11.
BMC Genomics ; 9: 637, 2008 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-19117520

RESUMO

BACKGROUND: Oxidative stress is a common stress encountered by living organisms and is due to an imbalance between intracellular reactive oxygen and nitrogen species (ROS, RNS) and cellular antioxidant defence. To defend themselves against ROS/RNS, bacteria possess a subsystem of detoxification enzymes, which are classified with regard to their substrates. To identify such enzymes in prokaryotic genomes, different approaches based on similarity, enzyme profiles or patterns exist. Unfortunately, several problems persist in the annotation, classification and naming of these enzymes due mainly to some erroneous entries in databases, mistake propagation, absence of updating and disparity in function description. DESCRIPTION: In order to improve the current annotation of oxidative stress subsystems, an innovative platform named OxyGene has been developed. It integrates an original database called OxyDB, holding thoroughly tested anchor-based signatures associated to subfamilies of oxidative stress enzymes, and a new anchor-driven annotator, for ab initio detection of ROS/RNS response genes. All complete Bacterial and Archaeal genomes have been re-annotated, and the results stored in the OxyGene repository can be interrogated via a Graphical User Interface. CONCLUSION: OxyGene enables the exploration and comparative analysis of enzymes belonging to 37 detoxification subclasses in 664 microbial genomes. It proposes a new classification that improves both the ontology and the annotation of the detoxification subsystems in prokaryotic whole genomes, while discovering new ORFs and attributing precise function to hypothetical annotated proteins. OxyGene is freely available at: http://www.umr6026.univ-rennes1.fr/english/home/research/basic/software.


Assuntos
Genoma Arqueal , Genoma Bacteriano , Estresse Oxidativo , Software , Bases de Dados Genéticas , Oxirredução , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA