RESUMO
Recent progress in the field of human induced pluripotent stem cells (iPSCs) has led to the efficient production of human neuronal cell models for in vitro study. This has the potential to enable the understanding of live human cellular and network function which is otherwise not possible. However, a major challenge is the generation of reproducible neural networks together with the ability to interrogate and record at the single cell level. A promising aid is the use of biomaterial scaffolds that would enable the development and guidance of neuronal networks in physiologically relevant architectures and dimensionality. The optimal scaffold material would need to be precisely fabricated with submicron resolution, be optically transparent, and biocompatible. Two-photon polymerisation (2PP) enables precise microfabrication of three-dimensional structures. In this study, we report the identification of two biomaterials that support the growth and differentiation of human iPSC-derived neural progenitors into functional neuronal networks. Furthermore, these materials can be patterned to induce alignment of neuronal processes and enable the optical interrogation of individual cells. 2PP scaffolds with tailored topographies therefore provide an effective method of producing defined in vitro human neural networks for application in influencing neurite guidance and complex network activity.
Assuntos
Células-Tronco Pluripotentes Induzidas , Orientação de Axônios , Materiais Biocompatíveis , Diferenciação Celular , Humanos , Neurônios , Alicerces TeciduaisRESUMO
We probe the possible inclusion of salt (NaCl) in the ice VII lattice over the pressure range from 2 to 4 gigapascal. We combine data from neutron diffraction experiments under pressure and from computational structure searches based on density functional theory. We observe that the high density amorphous precursor (NaCl·10.2D2O) crystallises during annealing at high pressure in the vicinity of the phase boundary between pure ices VII and VIII. The structure formed is very similar to that of pure ice VII. Our simulations indicate that substituting water molecules in the ice VII lattice with Na+ and Cl- ions would lead to a significant expansion of the lattice parameter. Since this expansion was not observed in our experiments, the ice crystallised is likely to be pure D2O or contains only a small fraction of the ions from the salt solution.
RESUMO
It has been known for decades that certain aqueous salt solutions of LiCl and LiBr readily form glasses when cooled to below ≈160 K. This fact has recently been exploited to produce a « salty ¼ high-pressure ice form: When the glass is compressed at low temperatures to pressures higher than 4 GPa and subsequently warmed, it crystallizes into ice VII with the ionic species trapped inside the ice lattice. Here we report the extreme limit of salt incorporation into ice VII, using high pressure neutron diffraction and molecular dynamics simulations. We show that high-pressure crystallisation of aqueous solutions of LiClâRH2O and LiBrâRH2O with R = 5.6 leads to solids with strongly expanded volume, a destruction of the hydrogen-bond network with an isotropic distribution of water-dipole moments, as well as a crystal-to-amorphous transition on decompression. This highly unusual behaviour constitutes an interesting pathway from a glass to a crystal where translational periodicity is restored but the rotational degrees of freedom remaining completely random.
RESUMO
The structure of amorphous NaCl solutions produced by fast quenching is studied as a function of pressure, up to 4 GPa, by combined neutron diffraction experiments and classical molecular dynamics simulations. Similarly to LiCl solutions the system amorphizes at ambient pressure in a dense phase structurally similar to the e-HDA phase in pure water. The measurement of the static structure factor as a function of pressure allowed us to validate a new polarizable force field developed by Tazi et al., 2012, never tested under non-ambient conditions. We infer from simulations that the hydration shells of Na(+) cations form well defined octahedra composed of both H2O molecules and Cl(-) anions at low pressure. These octahedra are gradually broken by the seventh neighbour moving into the shell of first neighbours yielding an irregular geometry. In contrast to LiCl solutions and pure water, the system does not show a polyamorphic transition under pressure. This confirms that the existence of polyamorphism relies on the tetrahedral structure of water molecules, which is broken here.