Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
HGG Adv ; 5(4): 100323, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38944683

RESUMO

Despite extensive global research into genetic predisposition for severe COVID-19, knowledge on the role of rare host genetic variants and their relation to other risk factors remains limited. Here, 52 genes with prior etiological evidence were sequenced in 1,772 severe COVID-19 cases and 5,347 population-based controls from Spain/Italy. Rare deleterious TLR7 variants were present in 2.4% of young (<60 years) cases with no reported clinical risk factors (n = 378), compared to 0.24% of controls (odds ratio [OR] = 12.3, p = 1.27 × 10-10). Incorporation of the results of either functional assays or protein modeling led to a pronounced increase in effect size (ORmax = 46.5, p = 1.74 × 10-15). Association signals for the X-chromosomal gene TLR7 were also detected in the female-only subgroup, suggesting the existence of additional mechanisms beyond X-linked recessive inheritance in males. Additionally, supporting evidence was generated for a contribution to severe COVID-19 of the previously implicated genes IFNAR2, IFIH1, and TBK1. Our results refine the genetic contribution of rare TLR7 variants to severe COVID-19 and strengthen evidence for the etiological relevance of genes in the interferon signaling pathway.


Assuntos
COVID-19 , Predisposição Genética para Doença , SARS-CoV-2 , Receptor 7 Toll-Like , Humanos , Receptor 7 Toll-Like/genética , COVID-19/genética , COVID-19/epidemiologia , Masculino , Feminino , Pessoa de Meia-Idade , SARS-CoV-2/genética , Adulto , Espanha/epidemiologia , Estudos de Casos e Controles , Itália/epidemiologia , Idoso , Índice de Gravidade de Doença , Variação Genética/genética
2.
Clin Epigenetics ; 16(1): 13, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38229153

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor prognosis. It is marked by extraordinary resistance to conventional therapies including chemotherapy and radiation, as well as to essentially all targeted therapies evaluated so far. More than 90% of PDAC cases harbor an activating KRAS mutation. As the most common KRAS variants in PDAC remain undruggable so far, it seemed promising to inhibit a downstream target in the MAPK pathway such as MEK1/2, but up to now preclinical and clinical evaluation of MEK inhibitors (MEKi) failed due to inherent and acquired resistance mechanisms. To gain insights into molecular changes during the formation of resistance to oncogenic MAPK pathway inhibition, we utilized short-term passaged primary tumor cells from ten PDACs of genetically engineered mice. We followed gain and loss of resistance upon MEKi exposure and withdrawal by longitudinal integrative analysis of whole genome sequencing, whole genome bisulfite sequencing, RNA-sequencing and mass spectrometry data. RESULTS: We found that resistant cell populations under increasing MEKi treatment evolved by the expansion of a single clone but were not a direct consequence of known resistance-conferring mutations. Rather, resistant cells showed adaptive DNA hypermethylation of 209 and hypomethylation of 8 genomic sites, most of which overlap with regulatory elements known to be active in murine PDAC cells. Both DNA methylation changes and MEKi resistance were transient and reversible upon drug withdrawal. Furthermore, MEKi resistance could be reversed by DNA methyltransferase inhibition with remarkable sensitivity exclusively in the resistant cells. CONCLUSION: Overall, the concept of acquired therapy resistance as a result of the expansion of a single cell clone with epigenetic plasticity sheds light on genetic, epigenetic and phenotypic patterns during evolvement of treatment resistance in a tumor with high adaptive capabilities and provides potential for reversion through epigenetic targeting.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Camundongos , Metilação de DNA , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , DNA/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/uso terapêutico , Linhagem Celular Tumoral , Mutação
3.
BMC Biol ; 22(1): 5, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38185627

RESUMO

BACKGROUND: SARS-CoV-2 infection depends on the host cell factors angiotensin-converting enzyme 2, ACE2, and the transmembrane serinprotease 2, TMPRSS2. Potential inhibitors of these proteins would be ideal targets against severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection. Our data opens the possibility that changes within TMPRSS2 can modulate the outcome during a SARS-CoV-2 infection. RESULTS: We reveal that TMPRSS2 acts not only during viral entry but has also an important role during viral replication. In addition to previous functions for TMPRSS2 during viral entry, we determined by specific downregulation of distinct isoforms that only isoform 1 controls and supports viral replication. G-quadruplex (G4) stabilization by chemical compounds impacts TMPRSS2 gene expression. Here we extend and in-depth characterize these observations and identify that a specific G4 in the first exon of the TMPRSS2 isoform 1 is particular targeted by the G4 ligand and affects viral replication. Analysis of potential single nucleotide polymorphisms (SNPs) reveals that a reported SNP at this G4 in isoform 1 destroys the G4 motif and makes TMPRSS2 ineffective towards G4 treatment. CONCLUSION: These findings uncover a novel mechanism in which G4 stabilization impacts SARS-CoV-2 replication by changing TMPRSS2 isoform 1 gene expression.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/genética , Regulação para Baixo , Isoformas de Proteínas , Éxons , Serina Endopeptidases/genética
4.
Biomolecules ; 13(7)2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37509153

RESUMO

BACKGROUND: The bladder exstrophy-epispadias complex (BEEC) is a spectrum of congenital abnormalities that involves the abdominal wall, the bony pelvis, the urinary tract, the external genitalia, and, in severe cases, the gastrointestinal tract as well. METHODS: Herein, we performed an exome analysis of case-parent trios with cloacal exstrophy (CE), the most severe form of the BEEC. Furthermore, we surveyed the exome of a sib-pair presenting with classic bladder exstrophy (CBE) and epispadias (E) only. Moreover, we performed large-scale re-sequencing of CBE individuals for novel candidate genes that were derived from the current exome analysis, as well as for previously reported candidate genes within the CBE phenocritical region, 22q11.2. RESULTS: The exome survey in the CE case-parent trios identified two candidate genes harboring de novo variants (NR1H2, GKAP1), four candidate genes with autosomal-recessive biallelic variants (AKR1B10, CLSTN3, NDST4, PLEKHB1) and one candidate gene with suggestive uniparental disomy (SVEP1). However, re-sequencing did not identify any additional variant carriers in these candidate genes. Analysis of the affected sib-pair revealed no candidate gene. Re-sequencing of the genes within the 22q11.2 CBE phenocritical region identified two highly conserved frameshift variants that led to early termination in two independent CBE males, in LZTR1 (c.978_985del, p.Ser327fster6) and in SLC7A4 (c.1087delC, p.Arg363fster68). CONCLUSIONS: According to previous studies, our study further implicates LZTR1 in CBE formation. Exome analysis-derived candidate genes from CE individuals may not represent a frequent indicator for other BEEC phenotypes and warrant molecular analysis before their involvement in disease formation can be assumed.


Assuntos
Extrofia Vesical , Epispadia , Masculino , Humanos , Extrofia Vesical/genética , Epispadia/genética , Exoma/genética , Bexiga Urinária/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Membrana/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Front Cell Dev Biol ; 11: 1091666, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37169019

RESUMO

Introduction: Cleft lip ± cleft palate (CL/P) is one of the most common birth defects. Although research has identified multiple genetic risk loci for different types of CL/P (i.e., syndromic or non-syndromic forms), determining the respective causal genes and understanding the relevant functional networks remain challenging. The recent introduction of single-cell RNA sequencing (scRNA-seq) has provided novel opportunities to study gene expression patterns at cellular resolution. The aims of our study were to: (i) aggregate available scRNA-seq data from embryonic mice and provide this as a resource for the craniofacial community; and (ii) demonstrate the value of these data in terms of the investigation of the gene expression patterns of CL/P candidate genes. Methods and Results: First, two published scRNA-seq data sets from embryonic mice were re-processed, i.e., data representing the murine time period of craniofacial development: (i) facial data from embryonic day (E) E11.5; and (ii) whole embryo data from E9.5-E13.5 from the Mouse Organogenesis Cell Atlas (MOCA). Marker gene expression analyses demonstrated that at E11.5, the facial data were a high-resolution representation of the MOCA data. Using CL/P candidate gene lists, distinct groups of genes with specific expression patterns were identified. Among others we identified that a co-expression network including Irf6, Grhl3 and Tfap2a in the periderm, while it was limited to Irf6 and Tfap2a in palatal epithelia, cells of the ectodermal surface, and basal cells at the fusion zone. The analyses also demonstrated that additional CL/P candidate genes (e.g., Tpm1, Arid3b, Ctnnd1, and Wnt3) were exclusively expressed in Irf6+ facial epithelial cells (i.e., as opposed to Irf6- epithelial cells). The MOCA data set was finally used to investigate differences in expression profiles for candidate genes underlying different types of CL/P. These analyses showed that syndromic CL/P genes (syCL/P) were expressed in significantly more cell types than non-syndromic CL/P candidate genes (nsCL/P). Discussion: The present study illustrates how scRNA-seq data can empower research on craniofacial development and disease.

6.
Bioinformatics ; 39(5)2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37084271

RESUMO

MOTIVATION: Missense variants are a frequent class of variation within the coding genome, and some of them cause Mendelian diseases. Despite advances in computational prediction, classifying missense variants into pathogenic or benign remains a major challenge in the context of personalized medicine. Recently, the structure of the human proteome was derived with unprecedented accuracy using the artificial intelligence system AlphaFold2. This raises the question of whether AlphaFold2 wild-type structures can improve the accuracy of computational pathogenicity prediction for missense variants. RESULTS: To address this, we first engineered a set of features for each amino acid from these structures. We then trained a random forest to distinguish between relatively common (proxy-benign) and singleton (proxy-pathogenic) missense variants from gnomAD v3.1. This yielded a novel AlphaFold2-based pathogenicity prediction score, termed AlphScore. Important feature classes used by AlphScore are solvent accessibility, amino acid network related features, features describing the physicochemical environment, and AlphaFold2's quality parameter (predicted local distance difference test). AlphScore alone showed lower performance than existing in silico scores used for missense prediction, such as CADD or REVEL. However, when AlphScore was added to those scores, the performance increased, as measured by the approximation of deep mutational scan data, as well as the prediction of expert-curated missense variants from the ClinVar database. Overall, our data indicate that the integration of AlphaFold2-predicted structures can improve pathogenicity prediction of missense variants. AVAILABILITY AND IMPLEMENTATION: AlphScore, combinations of AlphScore with existing scores, as well as variants used for training and testing are publicly available.


Assuntos
Inteligência Artificial , Biologia Computacional , Humanos , Virulência , Mutação de Sentido Incorreto , Mutação
7.
HGG Adv ; 4(1): 100166, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36589413

RESUMO

Non-syndromic cleft lip with/without cleft palate (nsCL/P) is a highly heritable facial disorder. To date, systematic investigations of the contribution of rare variants in non-coding regions to nsCL/P etiology are sparse. Here, we re-analyzed available whole-genome sequence (WGS) data from 211 European case-parent trios with nsCL/P and identified 13,522 de novo mutations (DNMs) in nsCL/P cases, 13,055 of which mapped to non-coding regions. We integrated these data with DNMs from a reference cohort, with results of previous genome-wide association studies (GWASs), and functional and epigenetic datasets of relevance to embryonic facial development. A significant enrichment of nsCL/P DNMs was observed at two GWAS risk loci (4q28.1 (p = 8 × 10-4) and 2p21 (p = 0.02)), suggesting a convergence of both common and rare variants at these loci. We also mapped the DNMs to 810 position weight matrices indicative of transcription factor (TF) binding, and quantified the effect of the allelic changes in silico. This revealed a nominally significant overrepresentation of DNMs (p = 0.037), and a stronger effect on binding strength, for DNMs located in the sequence of the core binding region of the TF Musculin (MSC). Notably, MSC is involved in facial muscle development, together with a set of nsCL/P genes located at GWAS loci. Supported by additional results from single-cell transcriptomic data and molecular binding assays, this suggests that variation in MSC binding sites contributes to nsCL/P etiology. Our study describes a set of approaches that can be applied to increase the added value of WGS data.


Assuntos
Fenda Labial , Fissura Palatina , Humanos , Fissura Palatina/genética , Fenda Labial/genética , Estudo de Associação Genômica Ampla , Alelos , Mutação/genética
8.
Mol Genet Genomic Med ; 11(3): e2109, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36468602

RESUMO

BACKGROUND: Nonsyndromic cleft lip with/without cleft palate (nsCL/P) is a congenital malformation of multifactorial etiology. Research has identified >40 genome-wide significant risk loci, which explain less than 40% of nsCL/P heritability. Studies show that some of the hidden heritability is explained by rare penetrant variants. METHODS: To identify new candidate genes, we searched for highly penetrant de novo variants (DNVs) in 50 nsCL/P patient/parent-trios with a low polygenic risk for the phenotype (discovery). We prioritized DNV-carrying candidate genes from the discovery for resequencing in independent cohorts of 1010 nsCL/P patients of diverse ethnicities and 1574 population-matched controls (replication). Segregation analyses and rare variant association in the replication cohort, in combination with additional data (genome-wide association data, expression, protein-protein-interactions), were used for final prioritization. CONCLUSION: In the discovery step, 60 DNVs were identified in 60 genes, including a variant in the established nsCL/P risk gene CDH1. Re-sequencing of 32 prioritized genes led to the identification of 373 rare, likely pathogenic variants. Finally, MDN1 and PAXIP1 were prioritized as top candidates. Our findings demonstrate that DNV detection, including polygenic risk score analysis, is a powerful tool for identifying nsCL/P candidate genes, which can also be applied to other multifactorial congenital malformations.


Assuntos
Fenda Labial , Fissura Palatina , Humanos , Fissura Palatina/genética , Fenda Labial/genética , Estudo de Associação Genômica Ampla , Proteínas de Ligação a DNA/genética , Fatores de Risco
9.
Front Genet ; 13: 914376, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35923707

RESUMO

Angioedema is a relatively rare but potentially life-threatening adverse reaction to angiotensin-converting enzyme inhibitors (ACEi) and angiotensin receptor blockers (ARBs). As with hereditary forms of angioedema (HAE), this adverse reaction is mediated by bradykinin. Research suggests that ACEi/ARB-induced angioedema has a multifactorial etiology. In addition, recent case reports suggest that some ACEi/ARB-induced angioedema patients may carry pathogenic HAE variants. The aim of the present study was to investigate the possible association between ACEi/ARB-induced angioedema and HAE genes via systematic molecular genetic screening in a large cohort of ACEi/ARB-induced angioedema cases. Targeted re-sequencing of five HAE-associated genes (SERPING1, F12, PLG, ANGPT1, and KNG1) was performed in 212 ACEi/ARB-induced angioedema patients recruited in Germany/Austria, Sweden, and Denmark, and in 352 controls from a German cohort. Among patients, none of the identified variants represented a known pathogenic variant for HAE. Moreover, no significant association with ACEi/ARB-induced angioedema was found for any of the identified common [minor allele frequency (MAF) >5%] or rare (MAF < 5%) variants. However, several non-significant trends suggestive of possible protective effects were observed. The lowest p-value for an individual variant was found in PLG (rs4252129, p.R523W, p = 0.057, p.adjust > 0.999, Fisher's exact test). Variant p.R523W was found exclusively in controls and has previously been associated with decreased levels of plasminogen, a precursor of plasmin which is part of a pathway directly involved in bradykinin production. In addition, rare, potentially functional variants (MAF < 5%, Phred-scaled combined annotation dependent depletion score >10) showed a nominally significant enrichment in controls both: 1) across all five genes; and 2) in the F12 gene alone. However, these results did not withstand correction for multiple testing. In conclusion, our results suggest that HAE-associated mutations are, at best, a rare cause of ACEi/ARB-induced angioedema. Furthermore, we were unable to identify a significant association between ACEi/ARB-induced angioedema and other variants in the investigated genes. Further studies with larger sample sizes are warranted to draw more definite conclusions concerning variants with limited effect sizes, including protective variants.

11.
Birth Defects Res ; 114(10): 478-486, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35362267

RESUMO

BACKGROUND: The acronym VATER/VACTERL association describes the combination of at least three component features (CFs): vertebral defects (V), anorectal malformations (ARM) (A), cardiac defects (C), tracheoesophageal fistula with or without esophageal atresia (TE), renal malformations (R), and limb defects (L). Individuals presenting two CFs have been termed VATER/VACTERL-like. Recently, FOXF1, HSPA6, HAAO, KYNU, TRAP1, and ZIC3 have been proposed as candidate genes for VATER/VACTERL, VATER/VACTERL-like, and ARM. Re-sequencing studies identified disease-causing variants in TRAP1 and ZIC3, the contribution of other genes was not independently investigated. One affected variant carrier in FOXF1 was previously identified. Here we re-sequenced FOXF1, HSPA6, HAAO, and KYNU in 522 affected individuals. METHODS: Using molecular inversion probe (MIP) technology, re-sequencing was performed in 63 individuals with VATER/VACTERL association, 313 with VATER/VACTERL-like association, and 146 with ARM. All individuals were of European ethnicity. Variant filtering considered variants with a minor allele frequency (MAF) ≤0.01 for putative recessive disease-genes HSPA6, HAAO, and KYNU. For the putative dominant disease-gene FOXF1 we considered variants with a MAF ≤0.0001. In silico prediction tools were used for further prioritization. RESULTS: Only two variants in FOXF1 in two independently affected individuals [c.443G>T, p.(Cys148Phe); c.850T>C, p.(Tyr284His)] passed our filter criteria. One individual presented with ARM, the second presented with TE and C comprising atrial and ventricular septal defects. Sanger sequencing confirmed both variants but also their inheritance from the healthy mother. CONCLUSION: Our analysis suggests that FOXF1, HSPA6, HAAO and KYNU do not play a major role in the formation of VACTER/VACTERL phenotypes or ARM.


Assuntos
3-Hidroxiantranilato 3,4-Dioxigenase , Malformações Anorretais , Fatores de Transcrição Forkhead , Proteínas de Choque Térmico HSP90 , Deformidades Congênitas dos Membros , 3-Hidroxiantranilato 3,4-Dioxigenase/genética , Canal Anal/anormalidades , Malformações Anorretais/genética , Esôfago/anormalidades , Fatores de Transcrição Forkhead/genética , Proteínas de Choque Térmico HSP90/genética , Cardiopatias Congênitas/genética , Humanos , Rim/anormalidades , Deformidades Congênitas dos Membros/genética , Coluna Vertebral/anormalidades , Traqueia/anormalidades
12.
Sci Rep ; 12(1): 1807, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35110662

RESUMO

Non-syndromic cleft lip with/without cleft palate (nsCL/P) is a frequent congenital malformation with multifactorial etiology. While recent genome-wide association studies (GWAS) have identified several nsCL/P risk loci, the functional effects of the associated non-coding variants are largely unknown. Furthermore, additional risk loci remain undetected due to lack of power. As genetic variants might alter binding of transcription factors (TF), we here hypothesized that the integration of data from TF binding sites, expression analyses and nsCL/P GWAS might help to (i) identify functionally relevant variants at GWAS loci, and (ii) highlight novel risk variants that have been previously undetected. Analysing the craniofacial TF TFAP2A in human embryonic palatal mesenchyme (HEPM) cells, we identified 2845 TFAP2A ChIP-seq peaks, several of which were located near nsCL/P candidate genes (e.g. MSX1 and SPRY2). Comparison with independent data suggest that 802 of them might be specific to craniofacial development, and genes near these peaks are enriched in processes relevant to nsCL/P. Integration with nsCL/P GWAS data, however, did not show robust evidence for co-localization of common nsCL/P risk variants with TFAP2A ChIP-seq peaks. This data set represents a new resource for the analyses of craniofacial processes, and similar approaches with additional cell lines and TFs could be applied to generate further insights into nsCL/P etiology.


Assuntos
Fenda Labial/genética , Fissura Palatina/genética , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Fator de Transcrição AP-2/genética , Alelos , Sítios de Ligação , Linhagem Celular , Sequenciamento de Cromatina por Imunoprecipitação , Fenda Labial/metabolismo , Fissura Palatina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único , Ligação Proteica , RNA-Seq , Fator de Transcrição AP-2/metabolismo , Transcriptoma
13.
Dtsch Arztebl Int ; 119(8): 117-123, 2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35101171

RESUMO

BACKGROUND: Contact with a pathogen is followed by variable courses of infectious disease, which are only partly explicable by classical risk factors. The susceptibility to infection is variable, as is the course of disease after infection. In this review, we discuss the extent to which this variation is due to genetic factors of the affected individual (the host). METHODS: Selective review of the literature on host genetics in infectious disease, with special attention to the pathogens SARSCoV- 2, influenza viruses, Mycobacterium tuberculosis, and human immunodeficiency virus (HIV). RESULTS: Genetic variants of the host contribute to the pathogenesis of infectious diseases. For example, in HIV infection, a relatively common variant leading to a loss of function of the HIV co-receptor CCR5 affects the course of the disease, as do variants in genes of the major histocompatibility complex (MHC) region. Rare monogenic variants of the interferon immune response system contribute to severe disease courses in COVID-19 and influenza (type I interferon in these two cases) and in tuberculosis (type II interferon). An estimated 1.8% of life-threatening courses of COVID-19 in men under age 60 are caused by a deficiency of toll-like receptor 7. The scientific understanding of host genetic factors has already been beneficial to the development of effective drugs. In a small number of cases, genetic information has also been used for individual therapeutic decision-making and for the identification of persons at elevated risk. CONCLUSION: A comprehensive understanding of host genetics can improve the care of patients with infectious diseases. Until the present, the clinical utility of host genetics has been limited to rare cases; in the future, polygenic risk scores summarizing the relevant genetic variants in each patient will enable a wider benefit. To make this possible, multicenter studies are needed that will systematically integrate clinical and genetic data.


Assuntos
COVID-19 , Infecções por HIV , Mycobacterium tuberculosis , Tuberculose , COVID-19/genética , Predisposição Genética para Doença/genética , Infecções por HIV/genética , Humanos , Masculino , Pessoa de Meia-Idade , Tuberculose/genética
14.
HGG Adv ; 3(2): 100093, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35199045

RESUMO

Esophageal atresia with or without tracheoesophageal fistula (EA/TEF) is the most common congenital malformation of the upper digestive tract. This study represents the first genome-wide association study (GWAS) to identify risk loci for EA/TEF. We used a European case-control sample comprising 764 EA/TEF patients and 5,778 controls and observed genome-wide significant associations at three loci. On chromosome 10q21 within the gene CTNNA3 (p = 2.11 × 10-8; odds ratio [OR] = 3.94; 95% confidence interval [CI], 3.10-5.00), on chromosome 16q24 next to the FOX gene cluster (p = 2.25 × 10-10; OR = 1.47; 95% CI, 1.38-1.55) and on chromosome 17q12 next to the gene HNF1B (p = 3.35 × 10-16; OR = 1.75; 95% CI, 1.64-1.87). We next carried out an esophageal/tracheal transcriptome profiling in rat embryos at four selected embryonic time points. Based on these data and on already published data, the implicated genes at all three GWAS loci are promising candidates for EA/TEF development. We also analyzed the genetic EA/TEF architecture beyond the single marker level, which revealed an estimated single-nucleotide polymorphism (SNP)-based heritability of around 37% ± 14% standard deviation. In addition, we examined the polygenicity of EA/TEF and found that EA/TEF is less polygenic than other complex genetic diseases. In conclusion, the results of our study contribute to a better understanding on the underlying genetic architecture of ET/TEF with the identification of three risk loci and candidate genes.

16.
Hum Genet ; 141(1): 147-173, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34889978

RESUMO

The combined impact of common and rare exonic variants in COVID-19 host genetics is currently insufficiently understood. Here, common and rare variants from whole-exome sequencing data of about 4000 SARS-CoV-2-positive individuals were used to define an interpretable machine-learning model for predicting COVID-19 severity. First, variants were converted into separate sets of Boolean features, depending on the absence or the presence of variants in each gene. An ensemble of LASSO logistic regression models was used to identify the most informative Boolean features with respect to the genetic bases of severity. The Boolean features selected by these logistic models were combined into an Integrated PolyGenic Score that offers a synthetic and interpretable index for describing the contribution of host genetics in COVID-19 severity, as demonstrated through testing in several independent cohorts. Selected features belong to ultra-rare, rare, low-frequency, and common variants, including those in linkage disequilibrium with known GWAS loci. Noteworthily, around one quarter of the selected genes are sex-specific. Pathway analysis of the selected genes associated with COVID-19 severity reflected the multi-organ nature of the disease. The proposed model might provide useful information for developing diagnostics and therapeutics, while also being able to guide bedside disease management.


Assuntos
COVID-19/genética , COVID-19/fisiopatologia , Sequenciamento do Exoma , Predisposição Genética para Doença , Fenótipo , Índice de Gravidade de Doença , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Alemanha , Humanos , Itália , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Quebeque , SARS-CoV-2 , Suécia , Reino Unido
17.
Med Genet ; 34(4): 275-286, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37034418

RESUMO

Identification of genetic variation in individual genomes is now a routine procedure in human genetic research and diagnostics. For many variants, however, insufficient evidence is available to establish a pathogenic effect, particularly for variants in non-coding regions. Furthermore, the sheer number of candidate variants renders testing in individual assays virtually impossible. While scalable approaches are being developed, the selection of methods and resources, and the application of a given framework to a particular disease or trait remain major challenges. This limits the translation of results from both genome-wide association studies and genome sequencing. Here, we discuss computational and experimental approaches available for functional annotation of non-coding variation.

18.
Med Genet ; 34(4): 259-260, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38836090
19.
Genes (Basel) ; 12(12)2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34946818

RESUMO

The adult human body contains about 4 g of iron. About 1-2 mg of iron is absorbed every day, and in healthy individuals, the same amount is excreted. We describe a patient who presents with severe iron deficiency anemia with hemoglobin levels below 6 g/dL and ferritin levels below 30 ng/mL. Although red blood cell concentrates and intravenous iron have been substituted every month for years, body iron stores remain depleted. Diagnostics have included several esophago-gastro-duodenoscopies, colonoscopies, MRI of the liver, repetitive bone marrow biopsies, psychological analysis, application of radioactive iron to determine intact erythropoiesis, and measurement of iron excretion in urine and feces. Typically, gastrointestinal bleeding is a major cause of iron loss. Surprisingly, intestinal iron excretion in stool in the patient was repetitively increased, without gastrointestinal bleeding. Furthermore, whole exome sequencing was performed in the patient and additional family members to identify potential causative genetic variants that may cause intestinal iron loss. Under different inheritance models, several rare mutations were identified, two of which (in CISD1 and KRI1) are likely to be functionally relevant. Intestinal iron loss in the current form has not yet been described and is, with high probability, the cause of the severe iron deficiency anemia in this patient.


Assuntos
Anemia Ferropriva/etiologia , Anemia Ferropriva/genética , Trato Gastrointestinal/metabolismo , Hemorragia/complicações , Hemorragia/genética , Deficiências de Ferro/etiologia , Deficiências de Ferro/genética , Idoso , Idoso de 80 Anos ou mais , Anemia Ferropriva/sangue , Eritropoese/genética , Feminino , Variação Genética/genética , Humanos , Ferro/sangue , Ferro/metabolismo , Ferro/urina , Masculino , Pessoa de Meia-Idade , Mutação/genética
20.
J Clin Invest ; 131(23)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34597274

RESUMO

BackgroundThere is considerable variability in COVID-19 outcomes among younger adults, and some of this variation may be due to genetic predisposition.MethodsWe combined individual level data from 13,888 COVID-19 patients (n = 7185 hospitalized) from 17 cohorts in 9 countries to assess the association of the major common COVID-19 genetic risk factor (chromosome 3 locus tagged by rs10490770) with mortality, COVID-19-related complications, and laboratory values. We next performed metaanalyses using FinnGen and the Columbia University COVID-19 Biobank.ResultsWe found that rs10490770 risk allele carriers experienced an increased risk of all-cause mortality (HR, 1.4; 95% CI, 1.2-1.7). Risk allele carriers had increased odds of several COVID-19 complications: severe respiratory failure (OR, 2.1; 95% CI, 1.6-2.6), venous thromboembolism (OR, 1.7; 95% CI, 1.2-2.4), and hepatic injury (OR, 1.5; 95% CI, 1.2-2.0). Risk allele carriers age 60 years and younger had higher odds of death or severe respiratory failure (OR, 2.7; 95% CI, 1.8-3.9) compared with those of more than 60 years (OR, 1.5; 95% CI, 1.2-1.8; interaction, P = 0.038). Among individuals 60 years and younger who died or experienced severe respiratory failure, 32.3% were risk-variant carriers compared with 13.9% of those not experiencing these outcomes. This risk variant improved the prediction of death or severe respiratory failure similarly to, or better than, most established clinical risk factors.ConclusionsThe major common COVID-19 genetic risk factor is associated with increased risks of morbidity and mortality, which are more pronounced among individuals 60 years or younger. The effect was similar in magnitude and more common than most established clinical risk factors, suggesting potential implications for future clinical risk management.


Assuntos
Alelos , COVID-19 , Cromossomos Humanos Par 3/genética , Frequência do Gene , Loci Gênicos , Polimorfismo Genético , SARS-CoV-2 , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , COVID-19/genética , COVID-19/mortalidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Gravidade do Paciente , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA