Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(6): 112597, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37289588

RESUMO

Murine cytomegalovirus (MCMV) infection of macrophages relies on MCMV-encoded chemokine 2 (MCK2), while infection of fibroblasts occurs independently of MCK2. Recently, MCMV infection of both cell types was found to be dependent on cell-expressed neuropilin 1. Using a CRISPR screen, we now identify that MCK2-dependent infection requires MHC class Ia/ß-2-microglobulin (B2m) expression. Further analyses reveal that macrophages expressing MHC class Ia haplotypes H-2b and H-2d, but not H-2k, are susceptible to MCK2-dependent infection with MCMV. The importance of MHC class I expression for MCK2-dependent primary infection and viral dissemination is highlighted by experiments with B2m-deficient mice, which lack surface expression of MHC class I molecules. In those mice, intranasally administered MCK2-proficient MCMV mimics infection patterns of MCK2-deficient MCMV in wild-type mice: it does not infect alveolar macrophages and subsequently fails to disseminate into the salivary glands. Together, these data provide essential knowledge for understanding MCMV-induced pathogenesis, tissue targeting, and virus dissemination.


Assuntos
Infecções por Citomegalovirus , Muromegalovirus , Camundongos , Animais , Antígenos de Histocompatibilidade Classe I , Macrófagos , Glândulas Salivares , Camundongos Endogâmicos BALB C
2.
Curr Opin Immunol ; 82: 102307, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36996701

RESUMO

Cytomegaloviruses (CMVs) possess exquisite mechanisms enabling colonization, replication, and release allowing spread to new hosts. Moreover, they developed ways to escape the control of the host immune responses and hide latently within the host cells. Here, we outline studies that visualized individual CMV-infected cells using reporter viruses. These investigations provided crucial insights into all steps of CMV infection and mechanisms the host's immune response struggles to control it. Uncovering complex viral and cellular interactions and underlying molecular as well as immunological mechanisms are a prerequisite for the development of novel therapeutic interventions for successful treatment of CMV-related pathologies in neonates and transplant patients.


Assuntos
Infecções por Citomegalovirus , Recém-Nascido , Humanos , Citomegalovirus , Imunidade
3.
Front Immunol ; 12: 729607, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804014

RESUMO

The mucosal immune system is the first line of defense against pathogens. Germinal centers (GCs) in the Peyer's patches (PPs) of the small intestine are constantly generated through stimulation of the microbiota. In this study, we investigated the role of γδ T cells in the GC reactions in PPs. Most γδ T cells in PPs localized in the GCs and expressed a TCR composed of Vγ1 and Vδ6 chains. By using mice with partial and total γδ T cell deficiencies, we found that Vγ1+/Vδ6+ T cells can produce high amounts of IL-4, which drives the proliferation of GC B cells as well as the switch of GC B cells towards IgA. Therefore, we conclude that γδ T cells play a role in sustaining gut homeostasis and symbiosis via supporting the GC reactions in PPs.


Assuntos
Linfócitos B/metabolismo , Centro Germinativo/metabolismo , Interleucina-4/metabolismo , Mucosa Intestinal/metabolismo , Linfócitos Intraepiteliais/metabolismo , Nódulos Linfáticos Agregados/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Animais , Linfócitos B/imunologia , Linfócitos B/microbiologia , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Centro Germinativo/imunologia , Centro Germinativo/microbiologia , Imunidade nas Mucosas , Imunoglobulina A/imunologia , Imunoglobulina A/metabolismo , Switching de Imunoglobulina , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Linfócitos Intraepiteliais/imunologia , Linfócitos Intraepiteliais/microbiologia , Ativação Linfocitária , Depleção Linfocítica , Camundongos Knockout , Nódulos Linfáticos Agregados/imunologia , Nódulos Linfáticos Agregados/microbiologia , Fenótipo , Receptores de Antígenos de Linfócitos T gama-delta/genética , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Infecções por Salmonella/imunologia , Infecções por Salmonella/metabolismo , Infecções por Salmonella/microbiologia , Salmonella typhimurium/imunologia , Salmonella typhimurium/patogenicidade , Transdução de Sinais
4.
Sci Immunol ; 6(60)2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34172587

RESUMO

Viral encephalitis initiates a series of immunological events in the brain that can lead to brain damage and death. Astrocytes express IFN-ß in response to neurotropic infection, whereas activated microglia produce proinflammatory cytokines and accumulate at sites of infection. Here, we observed that neurotropic vesicular stomatitis virus (VSV) infection causes recruitment of leukocytes into the central nervous system (CNS), which requires MyD88, an adaptor of Toll-like receptor and interleukin-1 receptor signaling. Infiltrating leukocytes, and in particular CD8+ T cells, protected against lethal VSV infection of the CNS. Reconstitution of MyD88, specifically in neurons, restored chemokine production in the olfactory bulb as well as leukocyte recruitment into the infected CNS and enhanced survival. Comparative analysis of the translatome of neurons and astrocytes verified neurons as the critical source of chemokines, which regulated leukocyte infiltration of the infected brain and affected survival.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Quimiocinas/metabolismo , Encefalite Viral/imunologia , Fator 88 de Diferenciação Mieloide/metabolismo , Infecções por Rhabdoviridae/imunologia , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Modelos Animais de Doenças , Encefalite Viral/patologia , Encefalite Viral/virologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Neurônios/metabolismo , Bulbo Olfatório/citologia , Bulbo Olfatório/imunologia , Bulbo Olfatório/patologia , Bulbo Olfatório/virologia , Infecções por Rhabdoviridae/patologia , Infecções por Rhabdoviridae/virologia , Transdução de Sinais/imunologia , Vesiculovirus/imunologia
5.
Cell Rep ; 35(12): 109273, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34161766

RESUMO

Immunosuppressive myeloid cells are frequently induced in tumors and attenuate anti-tumor effector functions. In this study, we differentiate immunosuppressive regulatory macrophages (Mregs) from hematopoietic progenitors and test their potential to suppress adaptive immune responses in lymph nodes. Targeted delivery of Mregs to lymph nodes is facilitated by retroviral overexpression of the chemokine receptor CCR7 and intra-lymphatic cell application. Delivery of Mregs completely abolishes the priming of cognate CD8 cells and strongly reduces delayed-type hypersensitivity reactions. Mreg-mediated T cell suppression requires cell-cell contact-regulated nitric oxide production. Two-photon microscopy reveals that nitric oxide produced by Mregs reduces the interaction duration between dendritic cells and T cells. Exposure of activated T cells to nitric oxide strongly reduces their binding to ICAM-1, indicating that nitrosylation of proteins involved in cell adhesion affects synapse formation. Thus, this study identifies a mechanism of myeloid cell-mediated immune suppression and provides an approach for its therapeutic use.


Assuntos
Apresentação Cruzada/imunologia , Sinapses Imunológicas/metabolismo , Linfonodos/metabolismo , Macrófagos/metabolismo , Linfócitos T/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Comunicação Celular , Movimento Celular , Proliferação de Células , Células Dendríticas/metabolismo , Ativação Linfocitária/imunologia , Camundongos Endogâmicos C57BL , Óxido Nítrico , Receptores CCR7/metabolismo
6.
J Control Release ; 334: 201-212, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-33865899

RESUMO

Antibiotic treatment of tuberculosis (TB) is complex, lengthy, and can be associated with various adverse effects. As a result, patient compliance often is poor, thus further enhancing the risk of selecting multi-drug resistant bacteria. Macrophage mannose receptor (MMR)-positive alveolar macrophages (AM) constitute a niche in which Mycobacterium tuberculosis replicates and survives. Therefore, we encapsulated levofloxacin in lipid nanocarriers functionalized with fucosyl residues that interact with the MMR. Indeed, such nanocarriers preferentially targeted MMR-positive myeloid cells, and in particular, AM. Intracellularly, fucosylated lipid nanocarriers favorably delivered their payload into endosomal compartments, where mycobacteria reside. In an in vitro setting using infected human primary macrophages as well as dendritic cells, the encapsulated antibiotic cleared the pathogen more efficiently than free levofloxacin. In conclusion, our results point towards carbohydrate-functionalized nanocarriers as a promising tool for improving TB treatment by targeted delivery of antibiotics.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Antibacterianos/farmacologia , Humanos , Lipídeos , Macrófagos , Tuberculose/tratamento farmacológico
7.
Nat Commun ; 11(1): 1114, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32111837

RESUMO

Little is known regarding lymph node (LN)-homing of immune cells via afferent lymphatics. Here, we show, using a photo-convertible Dendra-2 reporter, that recently activated CD4 T cells enter downstream LNs via afferent lymphatics at high frequencies. Intra-lymphatic immune cell transfer and live imaging data further show that activated T cells come to an instantaneous arrest mediated passively by the mechanical 3D-sieve barrier of the LN subcapsular sinus (SCS). Arrested T cells subsequently migrate randomly on the sinus floor independent of both chemokines and integrins. However, chemokine receptors are imperative for guiding cells out of the SCS, and for their subsequent directional translocation towards the T cell zone. By contrast, integrins are dispensable for LN homing, yet still contribute by increasing the dwell time within the SCS and by potentially enhancing T cell sensing of chemokine gradients. Together, these findings provide fundamental insights into mechanisms that control homing of lymph-derived immune cells.


Assuntos
Linfócitos T CD4-Positivos/fisiologia , Movimento Celular/imunologia , Quimiocinas/metabolismo , Integrinas/metabolismo , Linfonodos/fisiologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Endotélio Linfático/fisiologia , Integrinas/genética , Linfa/citologia , Linfonodos/citologia , Ativação Linfocitária , Camundongos , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismo , Receptores de Retorno de Linfócitos/metabolismo
8.
PLoS Pathog ; 14(8): e1007252, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30153311

RESUMO

Human cytomegalovirus (CMV) and mouse cytomegalovirus (MCMV) infection share many characteristics. Therefore infection of mice with MCMV is an important tool to understand immune responses and to design vaccines and therapies for patients at the risk of severe CMV disease. In this study, we investigated the immune response in the lungs following acute infection with MCMV. We used multi-color fluorescence microscopy to visualize single infected and immune cells in nodular inflammatory foci (NIFs) that formed around infected cells in the lungs. These NIFs consisted mainly of myeloid cells, T cells, and some NK cells. We found that the formation of NIFs was essential to reduce the number of infected cells in the lung tissue, showing that NIFs were sites of infection as well as sites of immune response. Comparing mice deficient for several leukocyte subsets, we identified T cells to be of prime importance for restricting MCMV infection in the lung. Moreover, T cells had to be present in NIFs in high numbers, and CD4 as well as CD8 T cells supported each other to efficiently control virus spread. Additionally, we investigated the effects of perforin and interferon-gamma (IFNγ) on the virus infection and found important roles for both mechanisms. NK cells and T cells were the major source for IFNγ in the lung and in in vitro assays we found that IFNγ had the potential to reduce plaque growth on primary lung stromal cells. Notably, the T cell-mediated control was shown to be perforin-independent but IFNγ-dependent. In total, this study systematically identifies crucial antiviral factors present in lung NIFs for early containment of a local MCMV infection at the single cell level.


Assuntos
Linfócitos T CD4-Positivos/fisiologia , Linfócitos T CD8-Positivos/fisiologia , Infecções por Herpesviridae/imunologia , Interferon gama/metabolismo , Muromegalovirus/imunologia , Pneumonia/virologia , Animais , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Proteínas de Ligação a DNA/genética , Infecções por Herpesviridae/complicações , Infecções por Herpesviridae/patologia , Imunidade Celular/fisiologia , Interferon gama/genética , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pneumonia/imunologia , Pneumonia/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA