RESUMO
An Electron Cyclotron Emission (ECE) modeling code has been developed to model ECE radiation with an arbitrary electron momentum distribution, a small oblique angle, both ordinary (O-mode) and extraordinary polarizations (X-mode), and multiple cyclotron frequency harmonics. The emission and absorption coefficients are calculated using the Poynting theorem from the cold plasma dispersion and the electron-microwave interaction from the full anti-Hermitian tensor. The modeling shows several ECE radiation signatures that can be used to diagnose the population of suprathermal electrons in a tokamak. First, in an n = 2 X-mode (X2) optically thick plasma and oblique ECE view, the modeling shows that only suprathermal electrons, which reside in a finite region of the velocity and space domains, can effectively generate cyclotron emissions to the ECE receiver. The code also finds that the O1 mode is sensitive to suprathermal electrons of both a high v⥠and vâ, while the X2 mode is dominantly sensitive to suprathermal electrons of a high vâ¥. The modeling shows that an oblique ECE system with both X/O polarization and a broad frequency coverage can be used to effectively yield information of the suprathermal electron population in a tokamak.
RESUMO
In this letter, a 263 GHz traveling wave tube for electron paramagnetic resonance spectroscopy is designed, fabricated and tested. A periodic permanent magnet focused pencil beam electron optical system is adopted. A folded waveguide slow-wave structure with modified serpentine bends is optimized to provide high-power wideband performance and stable operation. An experiment has been performed to verify the analysis results and confirm the amplifier stability. The device provides a maximum 11.9 W saturation output power and 25.5 dB saturation gain. Although the available solid-state signal source is unable to drive the amplifier to saturation beyond 260 - 264 GHz, 10 W output power over 5.6 GHz bandwidth has been measured.
RESUMO
System-on-chip millimeter wave integrated circuit technology is used on the two-dimensional millimeter-wave imaging reflectometer (MIR) upgrade for density fluctuation imaging on the DIII-D tokamak fusion plasma. Customized CMOS chips have been successfully developed for the transmitter module and receiver module array, covering the 55-75 GHz working band. The transmitter module has the capability of simultaneously launching eight tunable probe frequencies (>0 dBm output power each). The receiver enclosure contains 12 receiver modules in two vertical lines. The quasi-optical local oscillator coupling of previous MIR systems has been replaced with an internal active frequency multiplier chain for improved local oscillator power delivery and flexible installation in a narrow space together with improved shielding against electromagnetic interference. The 55-75 GHz low noise amplifier, used between the receiver antenna and the first-stage mixer, significantly improves module sensitivity and suppresses electronics noise. The receiver module has a 20 dB gain improvement compared with the mini-lens approach and better than -75 dBm sensitivity, and its electronics noise temperature has been reduced from 55 000 K down to 11 200 K. The V-band MIR system is developed for co-located multi-field investigation of MHD-scale fluctuations in the pedestal region with W-band electron cyclotron emission imaging on DIII-D tokamak.
RESUMO
Forward modeling is used to interpret inversion patterns of the pedestal-Scrape of Layer (SOL) Electron Cyclotron Emission (ECE) in DIII-D H-mode experiments. The modeling not only significantly improves the ECE data interpretation quality but also leads to the potential measurements of (1) the magnetic field strength |B| at the separatrix, (2) the pedestal |B| evolution during an inter-Edge Localized Mode (ELM) period, and (3) the pedestal Magnetohydrodynamics (MHD) radial structure. The ECE shine-through effect leads to three types of pedestal-SOL radiation inversions that are discussed in this paper. The first type of inversion is the non-monotonic Te,rad profile with respect to the major radius. Using the ECE frequency at the minimum Te,rad, the inversion can be applied to measure the magnetic field |B| at the separatrix and calibrate the mapping of the ECE channels with respect to the separatrix. The second type of inversion refers to the opposite phase between the radiation fluctuations δTe,rad at the pedestal and SOL. This δTe,rad phase inversion is sensitive to density and temperature fluctuations at the pedestal foot and, thus, can be used to qualitatively measure the MHD radial structure. The third type of inversion appears when the pedestal and SOL Te,rad evolve in an opposite trend, which can be used to infer the pedestal |B| field change during an inter-ELM period. The bandwidth effect on measuring δTe,rad due to pedestal MHD is also investigated in the radiation modeling.
RESUMO
A 693 GHz, eight-channel, poloidal high-k (k refers to wavenumber) collective scattering system is under development for the National Spherical Torus Experiment-Upgrade device. It will replace the previous 280 GHz, five-channel, tangential scattering system to study high-k electron density fluctuations, thereby providing a measurement of the kθ-spectrum of both electron temperature gradient and ion temperature gradient modes. A tool is under development to calculate the wavenumber that exists in the presence of strong magnetic pitch angles. We use this tool to motivate a new receiver optical design for significantly improved performance, details of which are presented herein.
RESUMO
Monolithic, millimeter wave "system-on-chip" technology has been employed in chip heterodyne radiometers in a newly developed Electron Cyclotron Emission Imaging (ECEI) system on the DIII-D tokamak for 2D electron temperature and fluctuation diagnostics. The system employs 20 horn-waveguide receiver modules each with customized W-band (75-110 GHz) monolithic microwave integrated circuit chips comprising a W-band low noise amplifier, a balanced mixer, a ×2 local oscillator (LO) frequency doubler, and two intermediate frequency amplifier stages in each module. Compared to previous quasi-optical ECEI arrays with Schottky mixer diodes mounted on planar antennas, the upgraded W-band array exhibits >30 dB additional gain and 20× improvement in noise temperature; an internal eight times multiplier chain is used to provide LO coupling, thereby eliminating the need for quasi-optical coupling. The horn-waveguide shielding housing avoids out-of-band noise interference on each module. The upgraded ECEI system plays an important role for absolute electron temperature and fluctuation measurements for edge and core region transport physics studies. An F-band receiver chip (up to 140 GHz) is under development for additional fusion facilities with a higher toroidal magnetic field. Visualization diagnostics provide multi-scale and multi-dimensional data in plasma profile evolution. A significant aspect of imaging measurement is focusing on artificial intelligence for science applications.
RESUMO
Ultrashort Pulse Reflectometry (USPR) is a plasma diagnostic technique involving the propagation and reflection of ultrashort duration (â¼few ns) chirps. The reflected packets pass through a multichannel filter with time-of-flight measurements performed on each of the filtered packets. A next generation USPR system is under development, spanning 28-75 GHz, for use on compact, short duration, magnetically confined fusion devices. This system presents a dramatic increase in performance compared with an earlier USPR system employed on the LLNL Sustained Spheromak Physics Experiment device more than a decade ago. The new system replaces upconverting mixers with higher power active multiplier chains to generate mm-wave transmitter chirps, with custom time-of-flight electronics reducing the time per measurement by a factor of 3X. Finally, the system is equipped with a field programmable gate array for data acquisition and analysis.
RESUMO
An Electron Cyclotron Emission Imaging (ECEI) data analysis module has been developed for the OMFIT platform to accommodate the needs of users at the DIII-D tokamak for physics applications. The user can easily access the ECEI spatial observation windows in the plasma that are calculated based on the automatically retrieved hardware setup and available DIII-D equilibria, perform spectral analysis, and obtain 2D electron temperature fluctuation images. The module provides a powerful data post-processing package for extracting important physics parameters from the 2D measurements, including the radial structure and poloidal mode number of Alfven eigenmodes, as well as the frequency-vs-wavenumber dispersion relationship of broadband MHD. The module propagates characterized synthetic fluctuations for the user, so one can perform forward modeling tasks with simple analytical fluctuations.
RESUMO
Monolithic, millimeter-wave "system-on-chip" (SoC) technology has been employed in heterodyne receiver integrated circuit radiometers in a newly developed Electron Cyclotron Emission Imaging (ECEI) system on the DIII-D tokamak for 2D electron temperature profile and fluctuation evolution diagnostics. A prototype module operating in the E-band (72 GHz-80 GHz) was first employed in a 2 × 10 element array that demonstrated significant improvements over the previous quasi-optical Schottky diode mixer arrays during the 2018 operational campaign of the DIII-D tokamak. For compatibility with International Thermonuclear Experimental Reactor relevant scenarios on DIII-D, the SoC ECEI system was upgraded with 20 horn-waveguide receiver modules. Each individual module contains a University of California Davis designed W-band (75 GHz-110 GHz) receiver die that integrates a broadband low noise amplifier, a double balanced down-converting mixer, and a ×4 multiplier on the local oscillator (LO) chain. A ×2 multiplier and two IF amplifiers are packaged and selected to further boost the signal strength and downconvert the signal frequency. The upgraded W-band array exhibits >30 dB additional gain and 20× improvement in noise temperature compared with the previous Schottky diode radio frequency mixer input systems; an internal 8 times multiplier chain is used to bring down the LO frequency below 12 GHz, thereby obviating the need for a large aperture for quasi-optical LO coupling and replacing it with coaxial connectors. Horn-waveguide shielding housing avoids out-of-band noise interference on each individual module. The upgraded ECEI system plays an important role for absolute electron temperature evolution and fluctuation measurements for edge and core region transport physics studies.
RESUMO
An 8-channel, high-k poloidal far-infrared (FIR) scattering system is under development for the National Spherical Torus eXperiment Upgrade (NSTX-U). The 693 GHz poloidal scattering system replaces a 5-channel, 280 GHz high-k toroidal scattering system to study high-k electron density fluctuations on NSTX-U. The FIR probe beam launched from Bay G is aimed toward Bay L, where large aperture optics collect radiation at 8 simultaneous scattering angles ranging from 2° to 15°. The reduced wavelength in the poloidal system results in less refraction, and coupled with a new poloidal scattering geometry, extends measurement of poloidal wavenumbers from the previous limit of 7 cm-1 up to >40 cm-1. Steerable launch optics coupled with receiver optics that can be remotely translated in 5 axes allow the scattering volume to be placed from r/a = 0.1 out to the pedestal region (r/a â¼ 0.99) and allow for both upward and downward scattering to cover different regions of the 2D fluctuation spectrum.
RESUMO
Synthetic diagnostics are aimed at simulating the response of diagnostic systems under actual experimental scenarios and are the key to drawing quantitative inferences from experimental data. The synthetic Electron Cyclotron Emission Imaging (ECEI) diagnostic is suitable for evaluation of the improvement arising from the application of Field Curvature Adjustment (FCA) lenses in the design of the upgraded Experimental Advanced Superconducting Tokamak (EAST) tokamak ECEI system. In previous ECEI systems, a curved image plane is inevitable in optics systems comprising only convex lenses, which leads to significant crosstalk between vertically adjacent channels and strongly limits the vertical channel resolution of the imaging system. The synthetic ECEI diagnostic results show that, with FCA lenses applied, the upgraded ECEI system has significant advantages to focus on high poloidal wavenumber structures with the aberrations from the spherical surfaces corrected and the various artifacts related to the field curvature suppressed. Also, the synthetic ECEI diagnostic is used for some quantitative calculations to partially decouple the effect of density fluctuations and temperature fluctuations for a given plasma.
RESUMO
A new generation of millimeter-wave heterodyne imaging receiver arrays has been developed and demonstrated on the DIII-D electron cyclotron emission imaging (ECEI) system. Improved circuit integration, improved noise performance, and enhanced shielding from out-of-band emission are made possible by using advanced liquid crystal polymer (LCP) substrates and monolithic microwave integrated circuit (MMIC) receiver chips. This array exhibits â¼15 dB additional gain and >30× reduction in noise temperature compared to previous generation ECEI arrays. Each LCP horn-waveguide module houses a 3 × 3 mm GaAs MMIC receiver chip, which consists of a low noise millimeter-wave preamplifier, balanced mixer, and IF amplifier together with a local oscillator multiplier chain driven at â¼12 GHz. A proof-of-principle partial LCP instrument with 5 poloidal channels was installed on DIII-D in 2017, with a full proof-of-principle system (20 poloidal × 8 radial channels) installed and commissioned in early 2018. The enhanced shielding of the LCP modules is seen to greatly reduce the sensitivity of ECEI signals to out-of-band microwave noise which has plagued previous ECEI studies on DIII-D. The LCP ECEI system is expected to be a valuable diagnostic tool for pedestal region measurements, focusing particularly on electron temperature evolution during edge localized mode bursting.
RESUMO
Recent advances in radio-frequency system-on-chip technology have provided mm-wave fusion plasma diagnostics with the capability to overcome major challenges such as space inefficiency, inflexible installation, sensitivity, susceptibility to EMI, and prohibitively high cost of conventional discrete component assemblies as higher imaging resolution and data accuracy are achieved by increasing the number of channels. Nowadays, shrinking transistor gate lengths on fabrication techniques have enabled hundreds of GHz operation, which is suitable for millimeter-wave diagnostics on current and future tokamaks. The Davis Millimeter Wave Research Center (DMRC) has successfully developed V-band (55-75 GHz) transmitter and receiver chips for Microwave Imaging Reflectometer (MIR) instruments. The transmitter can illuminate 8 different frequencies simultaneously within 55-75 GHz. Moreover, the receiver has the capability to amplify the reflected signal (>30 dB) while offering 10-30× reduction in noise temperature compared to current MIR instruments. Plasma diagnostics requires ultra-wideband (more than 20 GHz) operation which is approximately nine times wider bandwidth than the recent commercial impetus for communication systems. Current efforts are underway for gallium-arsenide monolithic microwave integrated circuit receiver chips at W-band (75-110 GHz) and F-band (90-140 GHz) permitting measurements at higher toroidal magnetic fields.
RESUMO
Electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry diagnostics have been employed on a number of magnetic fusion plasma confinement devices. The common approach is based on a Gaussian beam assumption, which generates good spatial resolution (centimeter level). However, the radial focal depth is limited by the poloidal resolution, which is comparable with the Rayleigh length (â¼150 mm). By contrast, a new Bessel beam approach has been developed and demonstrated to generate much longer focal depth with the property of propagation stability. To test the new approach, the DIII-D tokamak LCP ECEI optics have been re-designed to support a Bessel beam approach based on an axicon lens. The achievable radial coverage can exceed that of the current Gaussian approach by 3×. The imaging result is discussed in this paper based on the simulation analysis and laboratory testing result.
RESUMO
Millimeter-wave imaging diagnostics, with large poloidal span and wide radial range, have been developed on the EAST tokamak for visualization of 2D electron temperature and density fluctuations. A 384 channel (24 poloidal × 16 radial) Electron Cyclotron Emission Imaging (ECEI) system in F-band (90-140 GHz) was installed on the EAST tokamak in 2012 to provide 2D electron temperature fluctuation images with high spatial and temporal resolution. A co-located Microwave Imaging Reflectometry (MIR) will be installed for imaging of density fluctuations by December 2016. This "4th generation" MIR system has eight independent frequency illumination beams in W-band (75-110 GHz) driven by fast tuning synthesizers and active multipliers. Both of these advanced millimeter-wave imaging diagnostic systems have applied the latest techniques. A novel design philosophy "general optics structure" has been employed for the design of the ECEI and MIR receiver optics with large aperture. The extended radial and poloidal coverage of ECEI on EAST is made possible by innovations in the design of front-end optics. The front-end optical structures of the two imaging diagnostics, ECEI and MIR, have been integrated into a compact system, including the ECEI receiver and MIR transmitter and receiver. Two imaging systems share the same mid-plane port for simultaneous, co-located 2D fluctuation measurements of electron density and temperature. An intelligent remote-control is utilized in the MIR electronics systems to maintain focusing at the desired radial region even with density variations by remotely tuning the probe frequencies in about 200 µs. A similar intelligent technique has also been applied on the ECEI IF system, with remote configuration of the attenuations for each channel.
RESUMO
A new 2D Electron Cyclotron Emission Imaging (ECEI) diagnostic is being developed for the J-TEXT tokamak. It will provide the 2D electron temperature information with high spatial, temporal, and temperature resolution. The new ECEI instrument is being designed to support fundamental physics investigations on J-TEXT including MHD, disruption prediction, and energy transport. The diagnostic contains two dual dipole antenna arrays corresponding to F band (90-140 GHz) and W band (75-110 GHz), respectively, and comprises a total of 256 channels. The system can observe the same magnetic surface at both the high field side and low field side simultaneously. An advanced optical system has been designed which permits the two arrays to focus on a wide continuous region or two radially separate regions with high imaging spatial resolution. It also incorporates excellent field curvature correction with field curvature adjustment lenses. An overview of the diagnostic and the technical progress including the new remote control technique are presented.
RESUMO
Ion gyroscale turbulent fluctuations with the poloidal wavenumber kθ â¼ 3 cm-1 have been measured in the core region of the neutral beam (NB) injected low confinement (L-mode) plasmas on Korea superconducting tokamak advanced research. The turbulence poloidal wavenumbers are deduced from the frequencies and poloidal rotation velocities in the laboratory frame, measured by the multichannel microwave imaging reflectometer. Linear and nonlinear gyrokinetic simulations also predict the unstable modes with the normalized wavenumber kθρs â¼ 0.4, consistent with the measurement. Comparison of the measured frequencies with the intrinsic mode frequencies from the linear simulations indicates that the measured ones are primarily due to the E × B flow velocity in the NB-injected fast rotating plasmas.
RESUMO
The Far-infrared Tangential Interferometer/Polarimeter (FIReTIP) system has been refurbished and is being reinstalled on the National Spherical Torus Experiment-Upgrade (NSTX-U) to supply real-time line-integrated core electron density measurements for use in the NSTX-U plasma control system (PCS) to facilitate real-time density feedback control of the NSTX-U plasma. Inclusion of a visible light heterodyne interferometer in the FIReTIP system allows for real-time vibration compensation due to movement of an internally mounted retroreflector and the FIReTIP front-end optics. Real-time signal correction is achieved through use of a National Instruments CompactRIO field-programmable gate array.
RESUMO
The critical component enabling electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) to resolve 2D and 3D electron temperature and density perturbations is the heterodyne imaging array that collects and downconverts radiated emission and/or reflected signals (50-150 GHz) to an intermediate frequency (IF) band (e.g. 0.1-18 GHz) that can be transmitted by a shielded coaxial cable for further filtering and detection. New circuitry has been developed for this task, integrating gallium arsenide (GaAs) monolithic microwave integrated circuits (MMICs) mounted on a liquid crystal polymer (LCP) substrate. The improved topology significantly increases electromagnetic shielding from out-of-band interference, leads to 10× improvement in the signal-to-noise ratio, and dramatic cost savings through integration. The current design, optimized for reflectometry and edge radiometry on mid-sized tokamaks, has demonstrated >20 dB conversion gain in upper V-band (60-75 GHz). Implementation of the circuit in a multi-channel electron cyclotron emission imaging (ECEI) array will improve the diagnosis of edge-localized modes and fluctuations of the high-confinement, or H-mode, pedestal.
RESUMO
The electron cyclotron emission imaging system on the HL-2A tokamak has been upgraded to 24 (poloidally) × 16 (radially) channels based on the previous 24 × 8 array. The measurement region can be flexibly shifted due to the independence of the two local oscillator sources, and the field of view can be adjusted easily by changing the position of the zoom lenses. The temporal resolution is about 2.5 µs and the achievable spatial resolution is 1 cm. After laboratory calibration, it was installed on HL-2A tokamak in 2014, and the local 2D mode structures of MHD activities were obtained for the first time.